Advertisements
Advertisements
प्रश्न
If a + b + c = 9 and a2+ b2 + c2 =35, find the value of a3 + b3 + c3 −3abc
उत्तर
In the given problem, we have to find value of a3 + b3 + c3 −3abc
Given a + b + c = 9 , a2+ b2 + c2 =35
We shall use the identity
`(a+b+c)^2 = a^2 +b^2 + c^2 + 2 (ab+bc+ ca)`
`(a+b+c)^2 =35 + 2 (ab+bc+ ca)`
`(9)^2 =35 + 2 (ab+bc+ ca)`
`81 - 35 = 2 (ab+bc+ ca)`
`46/ 2 = (ab+bc+ ca)`
`23 = (ab+bc+ ca)`
We know that
`a^3 + b^3 + c^3- 3abc = (a+b+c)(a^2 + b^2 + c^2 - ab - bc -ca)`
`a^3 + b^3 + c^3- 3abc = (a+b+c)[(a^2 + b^2 + c^2) - (ab + bc +ca)`
Here substituting `a+b+c = 9,a^2 +b^2 + c^2 = 35 , ab +bc + ca = 23` we get
`a^3 +b^3 + c^3 - 3abc = 9 [(35 - 23)]`
` =9 xx 12`
` = 108`
Hence the value of a3 + b3 + c3 −3abc is 108.
APPEARS IN
संबंधित प्रश्न
Factorise the following:
64a3 – 27b3 – 144a2b + 108ab2
If `x + 1/x = sqrt5`, find the value of `x^2 + 1/x^2` and `x^4 + 1/x^4`
If `x^2 + 1/x^2 = 66`, find the value of `x - 1/x`
Evaluate of the following:
463+343
Evaluate of the following:
1043 + 963
If \[x^4 + \frac{1}{x^4} = 623\] then \[x + \frac{1}{x} =\]
If \[x - \frac{1}{x} = \frac{15}{4}\], then \[x + \frac{1}{x}\] =
If \[3x + \frac{2}{x} = 7\] , then \[\left( 9 x^2 - \frac{4}{x^2} \right) =\]
If a + b + c = 0, then \[\frac{a^2}{bc} + \frac{b^2}{ca} + \frac{c^2}{ab} =\]
Evaluate `(a/[2b] + [2b]/a )^2 - ( a/[2b] - [2b]/a)^2 - 4`.
If a - b = 0.9 and ab = 0.36; find:
(i) a + b
(ii) a2 - b2.
If a2 - 3a + 1 = 0, and a ≠ 0; find:
- `a + 1/a`
- `a^2 + 1/a^2`
Use the direct method to evaluate :
(3x2+5y2) (3x2−5y2)
Evaluate: `(3"x"+1/2)(2"x"+1/3)`
Evaluate: (5xy − 7) (7xy + 9)
Evaluate: `(2"x"-3/5)(2"x"+3/5)`
Expand the following:
(3x + 4) (2x - 1)
If `"a" + 1/"a" = 6;`find `"a"^2 - 1/"a"^2`
If `"a" - 1/"a" = 10;` find `"a" + 1/"a"`