Advertisements
Advertisements
प्रश्न
If x + y + z = 12 and xy + yz + zx = 27; find x2 + y2 + z2.
उत्तर
(x + y + z)2 = (12)2
⇒ x2 + y2 + z2 + 2xy + 2yz + 2zx = 144
⇒ x2 + y2 + z2 + 2(xy + yz + zx) = 144
⇒ x2 + y2 + z2 + 2(27) = 144
⇒ x2 + y2 + z2
= 144 - 54
= 90.
APPEARS IN
संबंधित प्रश्न
Factorise:
`2x^2 + y^2 + 8z^2 - 2sqrt2xy + 4sqrt2yz - 8xz`
Prove that a2 + b2 + c2 − ab − bc − ca is always non-negative for all values of a, b and c
Simplify: `(a + b + c)^2 - (a - b + c)^2`
Simplify (2x + p - c)2 - (2x - p + c)2
Simplify the following expressions:
`(x + y - 2z)^2 - x^2 - y^2 - 3z^2 +4xy`
Evaluate `(a/[2b] + [2b]/a )^2 - ( a/[2b] - [2b]/a)^2 - 4`.
Use the direct method to evaluate :
(0.5−2a) (0.5+2a)
Evaluate: `(2"x"-3/5)(2"x"+3/5)`
Simplify by using formula :
(x + y - 3) (x + y + 3)
Evaluate the following :
7.16 x 7.16 + 2.16 x 7.16 + 2.16 x 2.16