Advertisements
Advertisements
प्रश्न
Find the following product:
उत्तर
Given (x3 + 1) (x6 − x3 + 1)
We shall use the identity, `a^3 + b^3 = (a+ b) (a^2 + b^2 - ab)`
We can rearrange the `(x^3 + 1) (x^6 - x^3 + 1)`as
`= (x^3 + 1) [(x^3)^2 - (x^3)(1) + (1)^2]`
`= (x^3)^3 + (1)^3`
` = (x^3) xx (x^3)xx (x^3) + (1) xx (1) xx (1) `
` = x^9 + 1^3`
` = x^9 + 1`
Hence the Product value of `(x^3 + 1) (x^6 - x^3 + 1)`is .`x^9 + 1`.
APPEARS IN
संबंधित प्रश्न
Use suitable identity to find the following product:
(3x + 4) (3x – 5)
Factorise the following:
`27p^3-1/216-9/2p^2+1/4p`
If x + y + z = 0, show that x3 + y3 + z3 = 3xyz.
Evaluate following using identities:
(a - 0.1) (a + 0.1)
If 3x - 7y = 10 and xy = -1, find the value of `9x^2 + 49y^2`
Write the expanded form:
`(-3x + y + z)^2`
Write in the expand form: `(2x - y + z)^2`
Simplify (a + b + c)2 + (a - b + c)2 + (a + b - c)2
Find the cube of the following binomials expression :
\[\frac{3}{x} - \frac{2}{x^2}\]
If \[x + \frac{1}{x} = 3\], calculate \[x^2 + \frac{1}{x^2}, x^3 + \frac{1}{x^3}\] and \[x^4 + \frac{1}{x^4}\]
Simplify of the following:
(2x − 5y)3 − (2x + 5y)3
Find the following product:
(2ab − 3b − 2c) (4a2 + 9b2 +4c2 + 6 ab − 6 bc + 4ca)
If \[x^3 - \frac{1}{x^3} = 14\],then \[x - \frac{1}{x} =\]
Use the direct method to evaluate :
(xy+4) (xy−4)
If `x + (1)/x = 3`; find `x^2 + (1)/x^2`
If `x + (1)/x = 3`; find `x^4 + (1)/x^4`
If x + y = 1 and xy = -12; find:
x - y
Using suitable identity, evaluate the following:
9992