Advertisements
Advertisements
प्रश्न
Using suitable identity, evaluate the following:
9992
उत्तर
9992 = (1000 – 1)2
= (1000)2 + (1)2 – 2 × 1000 × 1 ...[Using identity, (a – b)2 = a2 + b2 – 2ab]
= 1000000 + 1 – 2000
= 998001
APPEARS IN
संबंधित प्रश्न
Use suitable identity to find the following product:
(3x + 4) (3x – 5)
Evaluate the following using suitable identity:
(998)3
Evaluate the following using identities:
`(2x+ 1/x)^2`
If `x + 1/x = sqrt5`, find the value of `x^2 + 1/x^2` and `x^4 + 1/x^4`
Find the cube of the following binomials expression :
\[4 - \frac{1}{3x}\]
If a − b = 4 and ab = 21, find the value of a3 −b3
Find the following product:
Find the following product:
(a − b)3 + (b − c)3 + (c − a)3 =
If \[x - \frac{1}{x} = \frac{15}{4}\], then \[x + \frac{1}{x}\] =
The product (a + b) (a − b) (a2 − ab + b2) (a2 + ab + b2) is equal to
Use identities to evaluate : (502)2
Evalute : `( 7/8x + 4/5y)^2`
Use the direct method to evaluate :
(3x2+5y2) (3x2−5y2)
Evaluate: (4 − ab) (8 + ab)
Find the squares of the following:
`(7x)/(9y) - (9y)/(7x)`
If `"a" - 1/"a" = 10;` find `"a" + 1/"a"`
If x + y = 1 and xy = -12; find:
x - y
If `"a"^2 - 7"a" + 1` = 0 and a = ≠ 0, find :
`"a" + (1)/"a"`
If `"r" - (1)/"r" = 4`; find: `"r"^2 + (1)/"r"^2`