Advertisements
Advertisements
प्रश्न
Using suitable identity, evaluate the following:
9992
उत्तर
9992 = (1000 – 1)2
= (1000)2 + (1)2 – 2 × 1000 × 1 ...[Using identity, (a – b)2 = a2 + b2 – 2ab]
= 1000000 + 1 – 2000
= 998001
APPEARS IN
संबंधित प्रश्न
Simplify the following products:
`(x/2 - 2/5)(2/5 - x/2) - x^2 + 2x`
Simplify the following products:
`(2x^4 - 4x^2 + 1)(2x^4 - 4x^2 - 1)`
If a + b + c = 0 and a2 + b2 + c2 = 16, find the value of ab + bc + ca.
If a2 + b2 + c2 = 16 and ab + bc + ca = 10, find the value of a + b + c.
If \[x - \frac{1}{x} = 7\] ,find the value of \[x^3 - \frac{1}{x^3}\]
Evaluate of the following:
(598)3
Simplify of the following:
(x+3)3 + (x−3)3
Find the following product:
\[\left( 3 + \frac{5}{x} \right) \left( 9 - \frac{15}{x} + \frac{25}{x^2} \right)\]
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{3}{x} - \frac{x}{3} \right) \left( \frac{x^2}{9} + \frac{9}{x^2} + 1 \right)\]
If x = −2 and y = 1, by using an identity find the value of the following
If \[x^4 + \frac{1}{x^4} = 623\] then \[x + \frac{1}{x} =\]
If a2 + b2 + c2 − ab − bc − ca =0, then
The difference between two positive numbers is 5 and the sum of their squares is 73. Find the product of these numbers.
Evaluate: (2 − z) (15 − z)
Expand the following:
`(2"a" + 1/(2"a"))^2`
Find the squares of the following:
`(7x)/(9y) - (9y)/(7x)`
Simplify by using formula :
(x + y - 3) (x + y + 3)
If 2x + 3y = 10 and xy = 5; find the value of 4x2 + 9y2
Factorise the following:
9y2 – 66yz + 121z2
Factorise the following:
9x2 + 4y2 + 16z2 + 12xy – 16yz – 24xz