Advertisements
Advertisements
Question
If \[x^4 + \frac{1}{x^4} = 194,\] then \[x^3 + \frac{1}{x^3} =\]
Options
76
52
64
none of these
Solution
Given `x^4 +1/x^4 = 194`
Using identity `(a+b)^2 = a^2+2ab+b^2`
Here, `a= x^2 , b = 1/x^2`
`(x^2 +1/x^2 )^2 = (x^2)^2 + 2 xx x^2 xx 1/x^2 +1/(x^2)^2`
`(x^2 + 1/x^2 )^2 = x^4 +1/x^4 +2`
`(x^2+1/x^2)^2 = 194 +2`
`(x^2+1/x^2)^2 = 196`
`(x^2+1/x^2)(x^2+1/x^2)^2 = 14 xx14`
`x^2+1/x^2 = 14`
Again using identity `(a+b)^2 = a^2 +2ab +b^2`
Here `a=x,b=1/x`
`(x+1/x)^2 = (x)^2 + 2 xx x xx 1/x +1/(x)^2`
`(x+1/x)^2 = x^2 + 2 + 1/x^2`
Substituting `x^2 +1/x^2 = 14`
`(x+1/x)^2 = 14 +2`
`(x+1/x)^2 = 16`
`x+1/x = 4`
Using identity `a^3 +b^3 = (a+b)(a^2 - ab +b^2)`
Here `a= x^3, b= 1/x^3`
`x^3 +1/x^3 = (x+1/x)(x^2 - x xx 1/x+1/x^2)`
`x^3 +1/x^3 = (4)(-1 +14)`
`x^3 +1/x^3 = (4)(13)`
`x^3 +1/x^3 = 52`
Hence the value of `x^3 +1/x^3`is 52.
APPEARS IN
RELATED QUESTIONS
Write the following cube in expanded form:
`[3/2x+1]^3`
Find the cube of the following binomials expression :
\[\frac{1}{x} + \frac{y}{3}\]
Evaluate of the following:
(99)3
Evaluate of the following:
933 − 1073
Find the following product:
(3x + 2y + 2z) (9x2 + 4y2 + 4z2 − 6xy − 4yz − 6zx)
Mark the correct alternative in each of the following:
If \[x + \frac{1}{x} = 5\] then \[x^2 + \frac{1}{x^2} = \]
Use identities to evaluate : (97)2
Use the direct method to evaluate :
(3x2+5y2) (3x2−5y2)
Expand the following:
(a + 4) (a + 7)
Find the squares of the following:
(2a + 3b - 4c)
Simplify by using formula :
`("a" + 2/"a" - 1) ("a" - 2/"a" - 1)`
Evaluate the following without multiplying:
(999)2
If `"a" - 1/"a" = 10;` find `"a" + 1/"a"`
If a2 - 3a - 1 = 0 and a ≠ 0, find : `"a"^2 - (1)/"a"^2`
Simplify:
`(x - 1/x)(x^2 + 1 + 1/x^2)`
Using suitable identity, evaluate the following:
101 × 102
Using suitable identity, evaluate the following:
9992
Factorise the following:
4x2 + 20x + 25
Expand the following:
(4a – b + 2c)2