Advertisements
Advertisements
Question
If \[x^4 + \frac{1}{x^4} = 623\] then \[x + \frac{1}{x} =\]
Options
27
25
- \[3\sqrt{3}\]
- \[- 3\sqrt{3}\]
Solution
In the given problem, we have to find the value of `x+1/x`
Given `x^4 + 1/x^4 = 623`
We shall use the identity `(a+b)^2 = a^2 +b^2 +2ab`
Here put`x^4 +1/x^4 = 623`,
`(x^2 +1/x^2)^2 = (x^2)^2 + 1/(x^2)^2 + 2 (x^2 xx 1/x^2)`
`(x^2 +1/x^2)^2 = x^4 + 1/x^4+ 2 (x^2 xx 1/x^2)`
`(x^2 +1/x^2)^2 = x^4+ 1/x^4+2`
`(x^2 +1/x^2)^2 = 625+2`
`(x^2 +1/x^2)^2 = 625`
`(x^2 +1/x^2) xx (x^2 +1/x^2) = 25xx25`
`(x^2 +1/x^2) = 25`
We shall use the identity `(a+b)^2 = a^2 +b^2 +2ab` we get,
`(x+1/x)^2 = x^2 +1/x^2 +2(x xx 1/x)`
`(x+1/x)^2 = 25 +2 (x xx 1/x)`
`(x+1/x)^2 = 25 +2`
`(x+1/x)^2 = 27`
Taking square root on both sides we get,
`sqrt((x+1/x) xx (x+1/x)) = sqrt(3 xx 3xx 3)`
`(x+1/x) = 3sqrt3`
Hence the value of `(x+1/x)`is `3sqrt3`.
APPEARS IN
RELATED QUESTIONS
Evaluate the following product without multiplying directly:
95 × 96
Evaluate the following using suitable identity:
(99)3
Write in the expanded form:
`(a + 2b + c)^2`
Simplify `(a + b + c)^2 + (a - b + c)^2`
If \[x - \frac{1}{x} = 5\] ,find the value of \[x^3 - \frac{1}{x^3}\]
If \[x^4 + \frac{1}{x^4} = 194,\] find \[x^3 + \frac{1}{x^3}, x^2 + \frac{1}{x^2}\] and \[x + \frac{1}{x}\]
If a + b + c = 9 and a2+ b2 + c2 =35, find the value of a3 + b3 + c3 −3abc
If x + \[\frac{1}{x}\] = then find the value of \[x^2 + \frac{1}{x^2}\].
The product (x2−1) (x4 + x2 + 1) is equal to
Use identities to evaluate : (101)2
If a2 - 3a + 1 = 0, and a ≠ 0; find:
- `a + 1/a`
- `a^2 + 1/a^2`
Use the direct method to evaluate the following products :
(3x – 2y) (2x + y)
Expand the following:
(x - 5) (x - 4)
Evaluate, using (a + b)(a - b)= a2 - b2.
399 x 401
Evaluate, using (a + b)(a - b)= a2 - b2.
4.9 x 5.1
If x + y = 9, xy = 20
find: x - y
If `"a" - 1/"a" = 10`; find `"a"^2 - 1/"a"^2`
If 2x + 3y = 10 and xy = 5; find the value of 4x2 + 9y2
Simplify:
(1 + x)(1 - x)(1 - x + x2)(1 + x + x2)
Without actually calculating the cubes, find the value of:
`(1/2)^3 + (1/3)^3 - (5/6)^3`