Advertisements
Advertisements
Question
(a − b)3 + (b − c)3 + (c − a)3 =
Options
(a + b + c) (a2 + b2 + c2 − ab − bc − ca)
(a − b) (b − c) (c − a)
3(a − b) ( b− c) (c − a)
none of these
Solution
Given `(a-b)^3 + (b-c)^3 + (c-a)^2`
Using identity `x^2 +y^3 +z^3 = 3xyz`
Here `x = a -b, y = b -c,z = c-a`
`(a-b)^3 +(b-c)^3 (c-a)^3 = 3(a-b )(b-c)(c-a)`
Hence the Value of `(a-b)^3+ (b-c)^3+(c-a)^3` is `3(a-b)(b-c)(c-a)`
APPEARS IN
RELATED QUESTIONS
Factorise the following using appropriate identity:
`x^2 - y^2/100`
Expand the following, using suitable identity:
(3a – 7b – c)2
Write the following cube in expanded form:
`[3/2x+1]^3`
Simplify the following
`(7.83 + 7.83 - 1.17 xx 1.17)/6.66`
Write in the expanded form:
`(a/(bc) + b/(ca) + c/(ab))^2`
Find the following product:
If \[x^2 + \frac{1}{x^2} = 102\], then \[x - \frac{1}{x}\] =
If \[\frac{a}{b} + \frac{b}{a} = 1\] then a3 + b3 =
The number x is 2 more than the number y. If the sum of the squares of x and y is 34, then find the product of x and y.
Use the direct method to evaluate the following products :
(y + 5)(y – 3)
Simplify by using formula :
(5x - 9) (5x + 9)
Simplify by using formula :
(a + b - c) (a - b + c)
If `"a"^2 + (1)/"a"^2 = 14`; find the value of `"a" + (1)/"a"`
If `x^2 + (1)/x^2 = 18`; find : `x - (1)/x`
Simplify:
(x + 2y + 3z)(x2 + 4y2 + 9z2 - 2xy - 6yz - 3zx)
Using suitable identity, evaluate the following:
1033
Using suitable identity, evaluate the following:
101 × 102
Factorise the following:
4x2 + 20x + 25
If a + b + c = 5 and ab + bc + ca = 10, then prove that a3 + b3 + c3 – 3abc = – 25.