Advertisements
Advertisements
Question
Factorise the following using appropriate identity:
`x^2 - y^2/100`
Solution
`x^2 - y^2/100 = x^2 - (y/10)^2`
= `(x+y/10)(x-y/10)` ...[x2 − y2 = (x + y)(x − y)]
APPEARS IN
RELATED QUESTIONS
Use suitable identity to find the following product:
(x + 4) (x + 10)
Factorise:
4x2 + 9y2 + 16z2 + 12xy – 24yz – 16xz
If x + y + z = 0, show that x3 + y3 + z3 = 3xyz.
Simplify the following:
0.76 x 0.76 - 2 x 0.76 x 0.24 x 0.24 + 0.24
If 9x2 + 25y2 = 181 and xy = −6, find the value of 3x + 5y
Simplify the following products:
`(2x^4 - 4x^2 + 1)(2x^4 - 4x^2 - 1)`
If \[x - \frac{1}{x} = 7\] ,find the value of \[x^3 - \frac{1}{x^3}\]
Find the following product:
\[\left( 3 + \frac{5}{x} \right) \left( 9 - \frac{15}{x} + \frac{25}{x^2} \right)\]
If a1/3 + b1/3 + c1/3 = 0, then
Find the square of `(3a)/(2b) - (2b)/(3a)`.
If 3x + 4y = 16 and xy = 4; find the value of 9x2 + 16y2.
If a2 - 5a - 1 = 0 and a ≠ 0 ; find:
- `a - 1/a`
- `a + 1/a`
- `a^2 - 1/a^2`
Use direct method to evaluate the following products :
(x + 8)(x + 3)
Use the direct method to evaluate the following products :
(a – 8) (a + 2)
Use the direct method to evaluate :
(3b−1) (3b+1)
If a2 - 3a - 1 = 0 and a ≠ 0, find : `"a"^2 - (1)/"a"^2`
Simplify:
(4x + 5y)2 + (4x - 5y)2
The coefficient of x in the expansion of (x + 3)3 is ______.
If `x/y + y/x = -1 (x, y ≠ 0)`, the value of x3 – y3 is ______.
Expand the following:
`(1/x + y/3)^3`