Advertisements
Advertisements
Question
If a + b = 10 and ab = 16, find the value of a2 − ab + b2 and a2 + ab + b2
Solution
In the given problem, we have to find the value of `(a^2 - ab+ b^2),(a^2 + ab +b^2)`
Given `a+b = 10 , ab = 16`
We shall use the identity \[\left( a + b \right)^3 = a^3 + b^3 + 3ab(a + b)\]
We can rearrange the identity as
`a^3 + b^3 = (a+b)^3 - 3ab (a+b)`
`a^3 +b^3 = (10)^3 - 3 xx 16 (10)`
`a^3 + b^3= 1000 - 480`
`a^3 + b^3 = 520`
Now substituting values in `a^3 + b^3 = (a+b) (a^2 + b^2 - ab)`as, `a^3 +b^3 = 520,a+b = 10`
`a^3 + b^3 = (a+b)(a^2 + b^2 - ab)`
`520 = 10 (a^2 + b^2 - ab)`
`520/10 = (a^2 +b^2 - ab)`
`52 = (a^2 + b^2 -ab)`
We can write `a^2 +b^2 + ab ` as `a^2 + b^2 +ab -2ab +2ab`
Now rearrange `a^2+b^2+ab - 2ab +2ab` as
`= a^2 + 2ab +b^2 -2ab +ab`
`=(a+b)^2 - ab`
Thus `a^2 +b^2 +ab =(a+b)^2 -ab`
Now substituting values `a+b = 10,10 ab = 16`
`a^2 +b^2 + ab = (10)^2 - 16`
`a^2 + b^2 +ab = 100 -16`
`a^2 + a^2 + ab = 84`
Hence the value of `(a^2 - ab +b^2),(a^2 + ab+b^2)`is `52,84` respectively.
APPEARS IN
RELATED QUESTIONS
Expand the following, using suitable identity:
(–2x + 5y – 3z)2
Factorise the following:
8a3 – b3 – 12a2b + 6ab2
Simplify the following products:
`(2x^4 - 4x^2 + 1)(2x^4 - 4x^2 - 1)`
Write in the expanded form:
(2a - 3b - c)2
Simplify `(a + b + c)^2 + (a - b + c)^2`
Simplify (2x + p - c)2 - (2x - p + c)2
If 2x+3y = 13 and xy = 6, find the value of 8x3 + 27y3
Find the value of 27x3 + 8y3, if 3x + 2y = 14 and xy = 8
Simplify of the following:
Find the following product:
If \[x^2 + \frac{1}{x^2} = 102\], then \[x - \frac{1}{x}\] =
If a + b + c = 0, then \[\frac{a^2}{bc} + \frac{b^2}{ca} + \frac{c^2}{ab} =\]
Evalute : `((2x)/7 - (7y)/4)^2`
Evaluate : (4a +3b)2 - (4a - 3b)2 + 48ab.
Use the direct method to evaluate the following products :
(b – 3) (b – 5)
Use the direct method to evaluate the following products :
(8 – b) (3 + b)
If a2 + b2 + c2 = 41 and a + b + c = 9; find ab + bc + ca.
Simplify:
`(x - 1/x)(x^2 + 1 + 1/x^2)`
The value of 2492 – 2482 is ______.
Expand the following:
`(4 - 1/(3x))^3`