Advertisements
Advertisements
Question
Find the following product:
(3x − 4y + 5z) (9x2 +16y2 + 25z2 + 12xy −15zx + 20yz)
Solution
In the given problem, we have to find Product of equations
Given (3x − 4y + 5z) (9x2 +16y2 + 25z2 + 12xy −15zx + 20yz)
We shall use the identity
`x^3 + y^3 + z^3 -xyz = (x+ y +z)(x^2 + y^2+z^2 - xy - yz -zx)`
` = (3x)^3 + (-4y)^3 + (5z)^3 - 3 (3x)(4y) (5z)`
`= (3x)xx (3x)xx(3x) - (-4y) xx (-4y) xx (-4y)+(5z)xx (5z)xx(5z) -3 (3x) (-4y)(5z)`
` = 27x^3 - 64y^3 + 125z^3 + 180xyz`
Hence the product of (3x − 4y + 5z) (9x2 +16y2 + 25z2 + 12xy −15zx + 20yz)is ` 27x^3 - 64y^3 + 125z^3 + 180xyz`
APPEARS IN
RELATED QUESTIONS
Expand the following, using suitable identity:
`[1/4a-1/2b+1]^2`
Simplify the following products:
`(1/2a - 3b)(1/2a + 3b)(1/4a^2 + 9b^2)`
Write in the expanded form: (-2x + 3y + 2z)2
Simplify: `(a + b + c)^2 - (a - b + c)^2`
Evaluate of the following:
(9.9)3
Evaluate of the following:
463+343
Evaluate of the following:
933 − 1073
Evaluate:
483 − 303 − 183
If a + b = 7 and ab = 12, find the value of a2 + b2
If \[\frac{a}{b} + \frac{b}{a} = 1\] then a3 + b3 =
If a - b = 4 and a + b = 6; find
(i) a2 + b2
(ii) ab
Use the direct method to evaluate :
(ab+x2) (ab−x2)
Expand the following:
(3x + 4) (2x - 1)
Expand the following:
(2p - 3q)2
Find the squares of the following:
3p - 4q2
If x + y = 1 and xy = -12; find:
x - y
The coefficient of x in the expansion of (x + 3)3 is ______.
Factorise the following:
`(2x + 1/3)^2 - (x - 1/2)^2`
Find the value of x3 + y3 – 12xy + 64, when x + y = – 4