Advertisements
Advertisements
Question
If 3x − 2y = 11 and xy = 12, find the value of 27x3 − 8y3
Solution
In the given problem, we have to find the value of `27x^3 - 8y^3`
Given `3x- 2y= 11,xy = 12`,
In order to find `27x^3 - 8y^3`we are using identity `(a-b)^3 = a^3 - b^3 - 3ab (a-b)`
`(3x - 2y)^3 = (11)^3`
`27x^3 - 8y^3 -3 (3x)(2y)(3x- 2y) = 11 xx 11 xx 11`
`27x^3 - 8y^3 -3 (3x)(2y)(3x- 2y) = 1331`
Here putting, 3x - 2y = 11,xy= 12
`27x^3 - 8y^3 - 18 xx 12 xx 11 = 1331`
`27x^3 -8y^3 - 2376 = 1331`
`27x^3 - 8y^3 = 1331 + 2376`
`27x^3 -8y^3 = 3707`
Hence the value of `27x^3 - 8y^3`is 3707.
APPEARS IN
RELATED QUESTIONS
Factorise the following using appropriate identity:
`x^2 - y^2/100`
Give possible expression for the length and breadth of the following rectangle, in which their area is given:
Area : 35y2 + 13y – 12 |
if `x + 1/x = 11`, find the value of `x^2 + 1/x^2`
If 9x2 + 25y2 = 181 and xy = −6, find the value of 3x + 5y
If \[x - \frac{1}{x} = 7\] ,find the value of \[x^3 - \frac{1}{x^3}\]
Find the following product:
Find the following product:
If \[x + \frac{1}{x} = 2\], then \[x^3 + \frac{1}{x^3} =\]
(a − b)3 + (b − c)3 + (c − a)3 =
Use the direct method to evaluate the following products :
(y + 5)(y – 3)
Evaluate: (2a + 0.5) (7a − 0.3)
Simplify by using formula :
(1 + a) (1 - a) (1 + a2)
If x + y = 9, xy = 20
find: x2 - y2.
If x + y + z = p and xy + yz + zx = q; find x2 + y2 + z2.
If `x^2 + (1)/x^2 = 18`; find : `x - (1)/x`
If `49x^2 - b = (7x + 1/2)(7x - 1/2)`, then the value of b is ______.
Factorise the following:
`(2x + 1/3)^2 - (x - 1/2)^2`
Expand the following:
(3a – 5b – c)2
Expand the following:
(–x + 2y – 3z)2
Without actually calculating the cubes, find the value of:
`(1/2)^3 + (1/3)^3 - (5/6)^3`