Advertisements
Advertisements
प्रश्न
If \[x^4 + \frac{1}{x^4} = 194,\] find \[x^3 + \frac{1}{x^3}, x^2 + \frac{1}{x^2}\] and \[x + \frac{1}{x}\]
उत्तर
In the given problem, we have to find the value of `x^3 + 1/x^3,x^2 + 1/x^2 .x+1/x`
Given `x^4 + 1/x^4 = 194`
By adding and subtracting `2 xx x^2 xx 1/x^2`in left hand side of `x^4 + 1/x^4 = 194` we get,
`x^4 + 1/x^4 + 2 xx x^2 xx 1/x^2 -2 xx x^2 xx 1/x^2 = 194`
`x^4 + 1/x^4 + 2 xx x^2 xx 1/x^2 -2 xx (x^2 xx 1/x^2 )= 194`
`(x^2 xx 1/x^2 )^2 - 2= 194`
`(x^2 xx 1/x^2 )^2 - 2= 194 + 2`
`(x^2 xx 1/x^2 )^2 - 2= (14)^2`
`(x^2 xx 1/x^2 )^2 - 2= 14^2`
Again by adding and subtracting `2xx x xx1/x`in left hand side of `(x^2 + 1/x^3) = 14`we get,
`x^2 + 1/x^2 + 2xx x xx 1/x -2 xx x xx 1/x =14`
`(x+ 1/x)^2 -2 xx x xx 1/x = 14`
`(x+ 1/x)^2 -2 = 14`
`(x+ 1/x)^2 = 14+ 2`
`(x+ 1/x)^2 = 4 xx 4 `
`(x+1/x) = 4`
Now cubing on both sides of `(x+1/x) = 4` we get
`(x+1/x)^3 = 4^3`
we shall use identity `(a+b)^3 = a^3 + b^3 + 3ab(a+b)`
`x^3 + 1/x^3 + 3 xx x xx 1/x (x+1/x) = 4 xx 4xx 4`
`x^3 + 1/x^2 + 3 xx x xx 1/x xx 4 = 64`
`x^3 + 1/x^2 + 12 = 64`
`x^3 + 1/x^2 + 12 = 64 - 12`
`x^3 + 1/x^3 = 52`
Hence the value of `x^2 + 1/x^2 ,x^2 + 1/x^2 , x+ 1/x` is 52,14,4 respectively.
APPEARS IN
संबंधित प्रश्न
Expand the following, using suitable identity:
`[1/4a-1/2b+1]^2`
Factorise the following:
8a3 + b3 + 12a2b + 6ab2
Evaluate the following using identities:
(1.5x2 − 0.3y2) (1.5x2 + 0.3y2)
If a + b + c = 0 and a2 + b2 + c2 = 16, find the value of ab + bc + ca.
Simplify the following expressions:
`(x^2 - x + 1)^2 - (x^2 + x + 1)^2`
If \[x - \frac{1}{x} = 5\] ,find the value of \[x^3 - \frac{1}{x^3}\]
Find the following product:
(4x − 5y) (16x2 + 20xy + 25y2)
If \[3x + \frac{2}{x} = 7\] , then \[\left( 9 x^2 - \frac{4}{x^2} \right) =\]
If a1/3 + b1/3 + c1/3 = 0, then
Use identities to evaluate : (101)2
Use identities to evaluate : (502)2
If a2 - 3a + 1 = 0, and a ≠ 0; find:
- `a + 1/a`
- `a^2 + 1/a^2`
Use the direct method to evaluate :
(2+a) (2−a)
Find the squares of the following:
(2a + 3b - 4c)
If `"a"^2 - 7"a" + 1` = 0 and a = ≠ 0, find :
`"a"^2 + (1)/"a"^2`
Simplify:
(x + y - z)2 + (x - y + z)2
Simplify:
(3x + 5y + 2z)(3x - 5y + 2z)
Using suitable identity, evaluate the following:
101 × 102
If a + b + c = 9 and ab + bc + ca = 26, find a2 + b2 + c2.
Prove that (a + b + c)3 – a3 – b3 – c3 = 3(a + b)(b + c)(c + a).