Advertisements
Advertisements
प्रश्न
If a + b = 7 and ab = 10; find a - b.
उत्तर
a + b = 7 and ab = 10
⇒ a (7 − a) = 10
⇒ 7a − a2 = 10
⇒ a2 − 7a + 10 = 0
⇒ a2 − 5a − 2a + 10 = 0
⇒ a (a − 5) − 2(a − 5) = 0
⇒ (a − 2) (a − 5) = 0
⇒ a = 5, 2
⇒ b = 2, 5
When a = 5, b = 2
⇒ a − b = 3
When a = 2,b = 5
⇒ a − b = −3
APPEARS IN
संबंधित प्रश्न
Factorise the following:
64a3 – 27b3 – 144a2b + 108ab2
If \[x + \frac{1}{x} = 3\], calculate \[x^2 + \frac{1}{x^2}, x^3 + \frac{1}{x^3}\] and \[x^4 + \frac{1}{x^4}\]
If \[x^4 + \frac{1}{x^4} = 194,\] find \[x^3 + \frac{1}{x^3}, x^2 + \frac{1}{x^2}\] and \[x + \frac{1}{x}\]
If x + y + z = 8 and xy +yz +zx = 20, find the value of x3 + y3 + z3 −3xyz
If a + b + c = 9 and ab + bc + ca = 23, then a2 + b2 + c2 =
Find the square of `(3a)/(2b) - (2b)/(3a)`.
Evalute : `( 7/8x + 4/5y)^2`
Use the direct method to evaluate the following products :
(5a + 16) (3a – 7)
If `"a" + 1/"a" = 6;`find `"a" - 1/"a"`
Expand the following:
(3a – 5b – c)2