Advertisements
Advertisements
Question
If `"m"^2 + (1)/"m"^2 = 51`; find the value of `"m"^3 - (1)/"m"^3`
Solution
`"m"^2 + (1)/"m"^2 = 51`
We know that
`("m" - 1/"m")^2`
= `"m"^2 + (1)/"m"^2 - 2`
⇒ `("m" - 1/"m")^2` = 51 - 2
⇒ `("m" - 1/"m")^2` = 49 = 72
⇒ `"m" - 1/"m"` = 7
⇒ `("m" - 1/"m")^3` = 73
⇒ `"m"^3 - (1)/"m"^3 - 3("m" - 1/"m")` = 343
⇒ `"m"^3 - (1)/"m"^3 - 3 xx 7` = 343
⇒ `"m"^3 - (1)/"m"^3`
= 343 + 21
= 364.
APPEARS IN
RELATED QUESTIONS
Use property to evaluate : 383 + (-26)3 + (-12)3
The sum of two numbers is 9 and their product is 20. Find the sum of their (i) Squares (ii) Cubes
Expand : (3x + 5y + 2z) (3x - 5y + 2z)
If `x + (1)/x = 5`, find the value of `x^2 + (1)/x^2, x^3 + (1)/x^3` and `x^4 + (1)/x^4`.
If x3 + y3 = 9 and x + y = 3, find xy.
If x + 2y = 5, then show that x3 + 8y3 + 30xy = 125.
Evaluate the following :
(5.45)3 + (3.55)3
Expand: `((2m)/n + n/(2m))^3`.
Find 27a3 + 64b3, if 3a + 4b = 10 and ab = 2
If `x^2 + 1/x^2` = 23, then find the value of `x + 1/x` and `x^3 + 1/x^3`