Advertisements
Advertisements
प्रश्न
Find the cube of: `3"a" + (1)/(3"a")`
बेरीज
उत्तर
`(3"a" + 1/(3"a"))^3`
= `(3"a")^3 + (1/(3"a"))^3 + 3 (3"a") (1/(3"a")) (3"a" + 1/(3"a"))`
= `27"a"^3 + (1)/(27"a"^3) + 9"a" + (1)/"a"`.
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
Expand.
(7x + 8y)3
Expand.
(52)3
Use property to evaluate : 383 + (-26)3 + (-12)3
If 4x2 + y2 = a and xy = b, find the value of 2x + y.
Find the cube of: `4"p" - (1)/"p"`
Find the cube of: `"a" - (1)/"a" + "b"`
If `9"a"^2 + (1)/(9"a"^2) = 23`; find the value of `27"a"^3 + (1)/(27"a"^3)`
If `"r" - (1)/"r" = 4`; find : `"r"^3 - (1)/"r"^3`
Expand: (3x + 4y)3.
Find 27a3 + 64b3, if 3a + 4b = 10 and ab = 2