मराठी

If X ≠ 0 and X + 1/X = 2 ; Then Show that : X^2 + 1/X^2 = X^3 + 1/X^3 = X^4 + 1/X^4 - Mathematics

Advertisements
Advertisements

प्रश्न

If X ≠ 0 and X + `1/"X"` = 2 ; then show that :

`x^2 + 1/x^2 = x^3 + 1/x^3 = x^4 + 1/x^4`

बेरीज

उत्तर

`( x + 1/x )^2 = x^2 + 1/x^2 + 2`

⇒ `x^2 + 1/x^2 = ( x + 1/x )^2 - 2`

⇒ `x^2 + 1/x^2 = (2)^2 - 2               [ ∵ x + 1/x = 2 ]`

⇒ `x^2 + 1/x^2 = 2`                .....(1)

`( x + 1/x )^3 = x^3 + 1/x^3 + 3( x + 1/x)`

⇒ `x^3 + 1/x^3 = ( x + 1/x )^3 - 3( x + 1/x )`

⇒ `x^3 + 1/x^3 = (2)^3 - 3(2)          [ ∵ x + 1/x = 2 ]`

⇒ `x^3 + 1/x^3 = 8 - 6`   

⇒ `x^3 + 1/x^3 = 2`                ...(2)      

We know that

`x^4 + 1/x^4 = ( x^2 + 1/x^2 )^2 - 2`

                       = `(2)^2 - 2`               [ from (1) ]
                       = 4 - 2
⇒ `x^4 + 1/x^4 = 2`                ...(3)

Thus from equations (1), (2) and (3), we have

`x^2 + 1/x^2 = x^3 + 1/x^3 = x^4 + 1/x^4`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Expansions (Including Substitution) - Exercise 4 (B) [पृष्ठ ६१]

APPEARS IN

सेलिना Concise Mathematics [English] Class 9 ICSE
पाठ 4 Expansions (Including Substitution)
Exercise 4 (B) | Q 11 | पृष्ठ ६१
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×