Advertisements
Advertisements
प्रश्न
If X ≠ 0 and X + `1/"X"` = 2 ; then show that :
`x^2 + 1/x^2 = x^3 + 1/x^3 = x^4 + 1/x^4`
उत्तर
`( x + 1/x )^2 = x^2 + 1/x^2 + 2`
⇒ `x^2 + 1/x^2 = ( x + 1/x )^2 - 2`
⇒ `x^2 + 1/x^2 = (2)^2 - 2 [ ∵ x + 1/x = 2 ]`
⇒ `x^2 + 1/x^2 = 2` .....(1)
`( x + 1/x )^3 = x^3 + 1/x^3 + 3( x + 1/x)`
⇒ `x^3 + 1/x^3 = ( x + 1/x )^3 - 3( x + 1/x )`
⇒ `x^3 + 1/x^3 = (2)^3 - 3(2) [ ∵ x + 1/x = 2 ]`
⇒ `x^3 + 1/x^3 = 8 - 6`
⇒ `x^3 + 1/x^3 = 2` ...(2)
We know that
`x^4 + 1/x^4 = ( x^2 + 1/x^2 )^2 - 2`
= `(2)^2 - 2` [ from (1) ]
= 4 - 2
⇒ `x^4 + 1/x^4 = 2` ...(3)
Thus from equations (1), (2) and (3), we have
`x^2 + 1/x^2 = x^3 + 1/x^3 = x^4 + 1/x^4`
APPEARS IN
संबंधित प्रश्न
Expand.
(101)3
Expand.
`((5x)/y + y/(5x))^3`
If a + 2b = 5; then show that : a3 + 8b3 + 30ab = 125.
Use property to evaluate : 383 + (-26)3 + (-12)3
Two positive numbers x and y are such that x > y. If the difference of these numbers is 5 and their product is 24, find:
(i) Sum of these numbers
(ii) Difference of their cubes
(iii) Sum of their cubes.
Expand : (3x - 5y - 2z) (3x - 5y + 2z)
Find the cube of: `3"a" + (1)/(3"a")`
If `x + (1)/x = 5`, find the value of `x^2 + (1)/x^2, x^3 + (1)/x^3` and `x^4 + (1)/x^4`.
If `"a" + 1/"a"` = 6, then find the value of `"a"^3 + 1/"a"^3`
(p + q)(p2 – pq + q2) is equal to _____________