Advertisements
Advertisements
प्रश्न
If a ≠ 0 and `a- 1/a` = 3 ; Find :
`a^3 - 1/a^3`
बेरीज
उत्तर
`a- 1/a` = 3...............(Given)
Taking a cube on both sides,
`( a - 1/a )^3 = 3^3`
`a^3 - 1/a^3 - 3( a - 1/a) = 27`..............[(a - b)3 = a3 - b3 -3ab(a - b)]
`a^3 - 1/a^3 - 3 × 3 = 27..............[a- 1/a = 3]`
`a^3 - 1/a^3 - 9 = 27`
`a^3 - 1/a^3` = 27 + 9
`a^3 - 1/a^3` = 36.
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
Expand.
(101)3
Expand.
`((5x)/y + y/(5x))^3`
If a ≠ 0 and `a - 1/a` = 4 ; find : `( a^4 + 1/a^4 )`
If X ≠ 0 and X + `1/"X"` = 2 ; then show that :
`x^2 + 1/x^2 = x^3 + 1/x^3 = x^4 + 1/x^4`
Find the cube of: `4"p" - (1)/"p"`
If `5x + (1)/(5x) = 7`; find the value of `125x^3 + (1)/(125x^3)`.
Simplify:
(a + b)3 + (a - b)3
Evaluate the following :
(8.12)3 - (3.12)3
Expand: (3x + 4y)3.
Expand: `((2m)/n + n/(2m))^3`.