Advertisements
Advertisements
प्रश्न
Find the cube of : `( 3a - 1/a ) (a ≠ 0 )`
बेरीज
उत्तर
( a - b )3 = a3 - 3a2b + 3ab2 - b3
`( 3a - 1/a )^3`
= `(3a)^3 - 3 × (3a)^2 × 1/a + 3. 3a (1/a)^2 - (1/a)^3`
= `27a^3 - 3 . 9a^2. 1/a + 9a. 1/a^2 - 1/a^3`
= `27a^3 - 27a + 9/a - 1/a^3`.
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
Expand.
(7 + m)3
If `3x - (1)/(3x) = 9`; find the value of `27x^3 - (1)/(27x^3)`.
If `"m"^2 + (1)/"m"^2 = 51`; find the value of `"m"^3 - (1)/"m"^3`
If `"p" + (1)/"p" = 6`; find : `"p"^3 + (1)/"p"^3`
If p - q = -1 and pq = -12, find p3 - q3
Expand: (x + 3)3.
Expand: `((2m)/n + n/(2m))^3`.
Expand: `[x + 1/y]^3`
Expand (3 + m)3
Expand (2a + 5)3