Advertisements
Advertisements
Question
Find the cube of : `( 3a - 1/a ) (a ≠ 0 )`
Sum
Solution
( a - b )3 = a3 - 3a2b + 3ab2 - b3
`( 3a - 1/a )^3`
= `(3a)^3 - 3 × (3a)^2 × 1/a + 3. 3a (1/a)^2 - (1/a)^3`
= `27a^3 - 3 . 9a^2. 1/a + 9a. 1/a^2 - 1/a^3`
= `27a^3 - 27a + 9/a - 1/a^3`.
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
Expand.
(101)3
If `a^2 + 1/a^2` = 18; a ≠ 0 find :
(i) `a - 1/a`
(ii) `a^3 - 1/a^3`
Find the cube of: `4"p" - (1)/"p"`
If `3x - (1)/(3x) = 9`; find the value of `27x^3 - (1)/(27x^3)`.
If `"a" - (1)/"a" = 7`, find `"a"^2 + (1)/"a"^2 , "a"^2 - (1)/"a"^2` and `"a"^3 - (1)/"a"^3`
If a + 2b + c = 0; then show that a3 + 8b3 + c3 = 6abc
If m - n = -2 and m3 - n3 = -26, find mn.
Expand: (3x + 4y)3.
Find the volume of the cube whose side is (x + 1) cm
(p + q)(p2 – pq + q2) is equal to _____________