Advertisements
Advertisements
प्रश्न
If 2x - 3y = 10 and xy = 16; find the value of 8x3 - 27y3.
उत्तर
Given that 2x - 3y = 10, xy = 16
∴ (2x - 3y)3 = (10)3
⇒ 8x3 - 27y3 - 3 (2x) (3y) (2x - 3y) = 1000
⇒ 8x3 - 27 y3 -18xy (2x - 3y) = 1000
⇒ 8x3 - 27 y3 - 18 (16) (10) = 1000
⇒ 8x3 - 27 y3 - 2880 = 1000
⇒8x3 - 27 y3 = 1000 + 2880
⇒ 8x3 - 27 y3 =3880
APPEARS IN
संबंधित प्रश्न
Expand.
(7 + m)3
Expand.
`((5x)/y + y/(5x))^3`
If `a + 1/a` = p and a ≠ 0; then show that:
`a^3 + 1/a^3 = p(p^2 - 3)`
If a + 2b = 5; then show that : a3 + 8b3 + 30ab = 125.
Use property to evaluate : 73 + 33 + (-10)3
If a ≠ 0 and `a- 1/a` = 3 ; Find :
`a^3 - 1/a^3`
If a ≠ 0 and `a - 1/a` = 4 ; find : `( a^3 - 1/a^3 )`
If `"m"^2 + (1)/"m"^2 = 51`; find the value of `"m"^3 - (1)/"m"^3`
Evaluate the following :
(3.29)3 + (6.71)3
If `x^2 + 1/x^2` = 23, then find the value of `x + 1/x` and `x^3 + 1/x^3`