Advertisements
Advertisements
प्रश्न
Simplify.
(3r − 2k)3 + (3r + 2k)3
उत्तर
It is known that,
\[\left( a + b \right)^3 = a^3 + b^3 + 3 a^2 b + 3a b^2 ; \left( a - b \right)^3 = a^3 - b^3 - 3 a^2 b + 3a b^2\]
\[\left( 3r - 2k \right)^3 + \left( 3r + 2k \right)^3 \]
\[ = \left( 3r \right)^3 - \left( 2k \right)^3 - 3 \times \left( 3r \right)^2 \times 2k + 3 \times 3r \times \left( 2k \right)^2 + \left( 3r \right)^3 + \left( 2k \right)^3 + 3 \times \left( 3r \right)^2 \times 2k + 3 \times 3r \times \left( 2k \right)^2 \]
\[ = 27 r^3 - 8 k^3 - 54 r^2 k + 36r k^2 + 27 r^3 + 8 k^3 + 54 r^2 k + 36r k^2 \]
\[ = 54 r^3 + 72r k^2\]
संबंधित प्रश्न
Find the cube of : `( 3a - 1/a ) (a ≠ 0 )`
If `a^2 + 1/a^2` = 18; a ≠ 0 find :
(i) `a - 1/a`
(ii) `a^3 - 1/a^3`
Use property to evaluate : 383 + (-26)3 + (-12)3
If `x^2 + (1)/x^2 = 18`; find : `x^3 - (1)/x^3`
If `"p" + (1)/"p" = 6`; find : `"p"^3 + (1)/"p"^3`
Expand: (x + 3)3.
Expand: (41)3
Expand (3p + 4q)3
Find the volume of the cube whose side is (x + 1) cm
a3 + b3 = (a + b)3 = __________