Advertisements
Advertisements
प्रश्न
If `x + (1)/x = 5`, find the value of `x^2 + (1)/x^2, x^3 + (1)/x^3` and `x^4 + (1)/x^4`.
उत्तर
`x + (1)/x = 5` ...(1)
Squaring both sides of (1)
`(x + 1/x)^2` = (5)2
⇒ `x^2 + (1)/x^2 + 2` = 25
⇒ `x^2 + (1)/x^2`
= 25 - 2
= 23 ...(2)
Cubing both sides of (1),
`(x + 1/x)^3` = 953
`x^3 + (1)/x^3 + 3 (x + 1/x)` = 125
⇒ `x^3 + (1)/x^3 + 3 (5)` = 125
⇒ `x^3 + (1)/x^3`
= 125 - 15
= 110
Squaring both sides of (2),
`(x^2 + 1/x^2)^2` = (23)2
⇒ `x^4 = (1)/x^4 + = 529`
⇒ `x^4 + (1)/x^4`
= 529 - 2
= 527.
APPEARS IN
संबंधित प्रश्न
Expand.
(52)3
Expand.
`(x + 1/x)^3`
Find the cube of : `( 3a - 1/a ) (a ≠ 0 )`
Use property to evaluate : 73 + 33 + (-10)3
If a ≠ 0 and `a- 1/a` = 3 ; Find :
`a^3 - 1/a^3`
If `5x + (1)/(5x) = 7`; find the value of `125x^3 + (1)/(125x^3)`.
Evaluate the following :
(8.12)3 - (3.12)3
If `x^2 + 1/x^2` = 23, then find the value of `x + 1/x` and `x^3 + 1/x^3`
Expand (3p + 4q)3
(p + q)(p2 – pq + q2) is equal to _____________