Advertisements
Advertisements
Question
Find the value of 4x2 + y2 + 25z2 + 4xy − 10yz − 20zx when x = 4, y = 3 and z = 2.
Solution
We have,
`4x^2 + y^2 + 25z^2 + 4xy - 10yz - 20zx`
`=> (2x)^2 + (y)^2 + (-5z)^2 + 2(2x)(y) + 2(y)(-5z) + 2(-5z)(2x)`
`=:> (2x + y - 5z)^2`
`=> [2[4] + 3 - 5(2)]^2` [∵ x = 4, y = 3 and z = 2]
`= [8 + 3 - 10]^2`
`=[1]^2`
= 1
`∴ 4x^2 + y^2 + 25z^2 + 4xy - 10yz - 20zx = 1`
APPEARS IN
RELATED QUESTIONS
Expand the following, using suitable identity:
(–2x + 5y – 3z)2
Evaluate the following using identities:
(0.98)2
Simplify the following products:
`(2x^4 - 4x^2 + 1)(2x^4 - 4x^2 - 1)`
Simplify of the following:
(x+3)3 + (x−3)3
Find the following product:
If \[x - \frac{1}{x} = \frac{1}{2}\],then write the value of \[4 x^2 + \frac{4}{x^2}\]
If \[x^3 - \frac{1}{x^3} = 14\],then \[x - \frac{1}{x} =\]
Use identities to evaluate : (101)2
Evaluate: (9 − y) (7 + y)
Evaluate: (2 − z) (15 − z)
Evaluate the following without multiplying:
(1005)2
If x + y = 9, xy = 20
find: x2 - y2.
If 2x + 3y = 10 and xy = 5; find the value of 4x2 + 9y2
Simplify:
(4x + 5y)2 + (4x - 5y)2
Simplify:
(2x + y)(4x2 - 2xy + y2)
Simplify:
`(x - 1/x)(x^2 + 1 + 1/x^2)`
Factorise the following:
16x2 + 4y2 + 9z2 – 16xy – 12yz + 24xz
Expand the following:
`(1/x + y/3)^3`