English

RD Sharma solutions for Mathematics [English] Class 9 chapter 2 - Exponents of Real Numbers [Latest edition]

Advertisements

Chapters

RD Sharma solutions for Mathematics [English] Class 9 chapter 2 - Exponents of Real Numbers - Shaalaa.com
Advertisements

Solutions for Chapter 2: Exponents of Real Numbers

Below listed, you can find solutions for Chapter 2 of CBSE RD Sharma for Mathematics [English] Class 9.


Exercise 2.1Exercise 2.2Exercise 2.3Exercise 2.4
Exercise 2.1 [Pages 12 - 13]

RD Sharma solutions for Mathematics [English] Class 9 2 Exponents of Real Numbers Exercise 2.1 [Pages 12 - 13]

Exercise 2.1 | Q 1.1 | Page 12

Simplify the following

3(a4b3)10×5(a2b2)3

Exercise 2.1 | Q 1.2 | Page 12

Simplify the following

(2x-2y3)3

Exercise 2.1 | Q 1.3 | Page 12

Simplify the following

(4×107)(6×10-5)8×104

Exercise 2.1 | Q 1.4 | Page 12

Simplify the following

4ab2(-5ab3)10a2b2

Exercise 2.1 | Q 1.5 | Page 12

Simplify the following

(x2y2a2b3)n

Exercise 2.1 | Q 1.6 | Page 12

Simplify the following

(a3n-9)6a2n-4

Exercise 2.1 | Q 2.1 | Page 12

If a = 3 and b = -2, find the values of :

aa + bb

 

Exercise 2.1 | Q 2.2 | Page 12

If a = 3 and b = -2, find the values of :

ab + ba

Exercise 2.1 | Q 2.3 | Page 12

If a = 3 and b = -2, find the values of :

(a + b)ab

 

Exercise 2.1 | Q 3.1 | Page 12

Prove that:

(xaxb)a2+ab+b2×(xbxc)b2+bc+c2×(xcxa)c2+ca+a2=1

Exercise 2.1 | Q 3.2 | Page 12

Prove that:

(xaxb)c×(xbxc)a×(xcxa)b=1

Exercise 2.1 | Q 4.1 | Page 12

Prove that:

11+xa-b+11+xb-a=1

Exercise 2.1 | Q 4.2 | Page 12

Prove that:

11+xb-a+xc-a+11+xa-b+xc-b+11+xb-c+xa-c=1

Exercise 2.1 | Q 5.1 | Page 12

Prove that:

a+b+ca-1b-1+b-1c-1+c-1a-1=abc

Exercise 2.1 | Q 5.2 | Page 12

Prove that:

(a-1+b-1)-1=aba+b

Exercise 2.1 | Q 6 | Page 12

If abc = 1, show that 11+a+b-1+11+b+c-1+11+c+a-1=1

Exercise 2.1 | Q 7.1 | Page 12

Simplify the following:

3n×9n+13n-1×9n-1

Exercise 2.1 | Q 7.2 | Page 12

Simplify the following:

5×25n+1-25×52n5×52n+3-25n+1

Exercise 2.1 | Q 7.3 | Page 12

Simplify the following:

5n+3-6×5n+19×5x-22×5n

Exercise 2.1 | Q 7.4 | Page 12

Simplify the following:

6(8)n+1+16(2)3n-210(2)3n+1-7(8)n

Exercise 2.1 | Q 8.1 | Page 12

Solve the following equation for x:

72x+3=1

Exercise 2.1 | Q 8.2 | Page 12

Solve the following equation for x:

2x+1=4x-3

Exercise 2.1 | Q 8.3 | Page 12

Solve the following equation for x:

25x+3=8x+3

Exercise 2.1 | Q 8.4 | Page 12

Solve the following equation for x:

42x=132

Exercise 2.1 | Q 8.5 | Page 12

Solve the following equation for x:

4x-1×(0.5)3-2x=(18)x

Exercise 2.1 | Q 8.6 | Page 12

Solve the following equation for x:

23x-7=256

Exercise 2.1 | Q 9.1 | Page 12

Solve the following equations for x:

22x-2x+3+24=0

Exercise 2.1 | Q 9.2 | Page 12

Solve the following equations for x:

32x+4+1=2.3x+2

Exercise 2.1 | Q 10 | Page 13

If 49392 = a4b2c3, find the values of a, b and c, where a, b and c are different positive primes.

Exercise 2.1 | Q 11 | Page 13

If 1176=2a3b7c, find a, b and c.

Exercise 2.1 | Q 12 | Page 13

Given 4725=3a5b7c, find

(i) the integral values of a, b and c

(ii) the value of 2-a3b7c

Exercise 2.1 | Q 13 | Page 13

If a=xyp-1,b=xyq-1 and c=xyr-1, prove that aq-rbr-pcp-q=1

Exercise 2.2 [Pages 24 - 27]

RD Sharma solutions for Mathematics [English] Class 9 2 Exponents of Real Numbers Exercise 2.2 [Pages 24 - 27]

Exercise 2.2 | Q 1.1 | Page 24

Assuming that x, y, z are positive real numbers, simplify the following:

(x-3)5

Exercise 2.2 | Q 1.2 | Page 24

Assuming that x, y, z are positive real numbers, simplify the following:

x3y-2

Exercise 2.2 | Q 1.3 | Page 24

Assuming that x, y, z are positive real numbers, simplify the following:

(x-23y-12)2

Exercise 2.2 | Q 1.4 | Page 24

Assuming that x, y, z are positive real numbers, simplify the following:

(x)-23y4÷xy-12

Exercise 2.2 | Q 1.5 | Page 24

Assuming that x, y, z are positive real numbers, simplify the following:

243x10y5z105

Exercise 2.2 | Q 1.6 | Page 24

Assuming that x, y, z are positive real numbers, simplify the following:

(x-4y-10)54

Exercise 2.2 | Q 1.7 | Page 24

Assuming that x, y, z are positive real numbers, simplify the following:

(23)5(67)2

Exercise 2.2 | Q 2.1 | Page 24

Simplify:

(16-15)52

Exercise 2.2 | Q 2.2 | Page 24

Simplify:

(32)-35

Exercise 2.2 | Q 2.3 | Page 24

Simplify:

(343)-23

Exercise 2.2 | Q 2.4 | Page 24

Simplify:

(0.001)13

Exercise 2.2 | Q 2.5 | Page 24

Simplify:

(25)32×(243)35(16)54×(8)43

Exercise 2.2 | Q 2.6 | Page 24

Simplify:

(25)8÷(25)13

Exercise 2.2 | Q 2.7 | Page 24

Simplify:

(5-1×7252×7-4)72×(5-2×7353×7-5)-52

Exercise 2.2 | Q 3.1 | Page 24

Prove that:

3×5-3÷3-135×3×566=35

Exercise 2.2 | Q 3.2 | Page 24

Prove that:

932-3×50-(181)-12=15

Exercise 2.2 | Q 3.3 | Page 24

Prove that:

(14)-2-3×823×40+(916)-12=163

Exercise 2.2 | Q 3.4 | Page 24

Prove that:

212×313×41410-15×535÷343×5-754-35×6=10

Exercise 2.2 | Q 3.5 | Page 24

Prove that:

14+(0.01)-12-(27)23=32

Exercise 2.2 | Q 3.6 | Page 24

Prove that:

2n+2n-12n+1-2n=32

Exercise 2.2 | Q 3.7 | Page 24

Prove that:

(64125)-23+1(256625)14+(25643)=6516

Exercise 2.2 | Q 3.8 | Page 24

Prove that:

3-3×62×9852×1253×(15)-43×313=282

Exercise 2.2 | Q 3.9 | Page 24

Prove that:

(0.6)0-(0.1)-1(38)-1(32)3+(-13)-1=-32

Exercise 2.2 | Q 4.1 | Page 25

Show that:

11+xa-b+11+xb-a=1

Exercise 2.2 | Q 4.2 | Page 25

Show that:

[{xa(a-b)xa(a+b)}÷{xb(b-a)xb(b+a)}]a+b=1

Exercise 2.2 | Q 4.3 | Page 25

Show that:

(x1a-b)1a-c(x1b-c)1b-a(x1c-a)1c-b=1

Exercise 2.2 | Q 4.4 | Page 25

Show that:

(xa2+b2xab)a+b(xb2+c2xbc)b+c(xc2+a2xac)a+c=x2(a3+b3+c3)

Exercise 2.2 | Q 4.5 | Page 25

Show that:

(xa-b)a+b(xb-c)b+c(xc-a)c+a=1

Exercise 2.2 | Q 4.6 | Page 25

Show that:

{(xa-a-1)1a-1}aa+1=x

Exercise 2.2 | Q 4.7 | Page 25

Show that:

(ax+1ay+1)x+y(ay+2az+2)y+z(az+3ax+3)z+x=1

Exercise 2.2 | Q 4.8 | Page 25

Show that:

(3a3b)a+b(3b3c)b+c(3c3a)c+a=1

Exercise 2.2 | Q 5 | Page 25

If 2x = 3y = 12z, show that 1z=1y+2x

Exercise 2.2 | Q 6 | Page 25

If 2x = 3y = 6-z, show that 1x+1y+1z=0

Exercise 2.2 | Q 7 | Page 25

If ax = by = cz and b2 = ac, show that y=2zxz+x

Exercise 2.2 | Q 8 | Page 26

If 3x = 5y = (75)z, show that z=xy2x+y

Exercise 2.2 | Q 9 | Page 26

If 27x=93x, find x.

Exercise 2.2 | Q 10.1 | Page 26

Find the value of x in the following:

25x÷2x=2205

Exercise 2.2 | Q 10.2 | Page 26

Find the value of x in the following:

(23)4=(22)x

Exercise 2.2 | Q 10.3 | Page 26

Find the value of x in the following:

(35)x(53)2x=12527

Exercise 2.2 | Q 10.4 | Page 26

Find the value of x in the following:

5x-2×32x-3=135

Exercise 2.2 | Q 10.5 | Page 26

Find the value of x in the following:

2x-7×5x-4=1250

Exercise 2.2 | Q 10.6 | Page 26

Find the value of x in the following:

(43)2x+12=132

Exercise 2.2 | Q 10.7 | Page 26

Find the value of x in the following:

52x+3=1

Exercise 2.2 | Q 10.8 | Page 26

Find the value of x in the following:

(13)x=44-34-6

Exercise 2.2 | Q 10.9 | Page 26

Find the value of x in the following:

(35)x+1=12527

Exercise 2.2 | Q 11 | Page 26

If x=213+223, Show that x3 - 6x = 6

Exercise 2.2 | Q 12 | Page 26

Determine (8x)x,If 9x+2=240+9x

Exercise 2.2 | Q 13 | Page 26

If 3x+1=9x-2, find the value of 21+x

Exercise 2.2 | Q 14 | Page 26

If 34x=(81)-1 and 101y=0.0001, find the value of 2-x+4y.

Exercise 2.2 | Q 15 | Page 26

If 53x=125 and 10y=0.001, find x and y.

Exercise 2.2 | Q 16.1 | Page 26

Solve the following equation:

3x+1=27×34

Exercise 2.2 | Q 16.2 | Page 26

Solve the following equation:

42x=(163)-6y=(8)2

Exercise 2.2 | Q 16.3 | Page 26

Solve the following equation:

3x-1×52y-3=225

Exercise 2.2 | Q 16.4 | Page 26

Solve the following equation:

8x+1=16y+2 and, (12)3+x=(14)3y

Exercise 2.2 | Q 16.5 | Page 26

Solve the following equation:

4x-1×(0.5)3-2x=(18)x

Exercise 2.2 | Q 16.6 | Page 26

Solve the following equation:

ab=(ba)1-2x, where a and b are distinct primes.

Exercise 2.2 | Q 17 | Page 26

If a and b are distinct primes such that a6b-43=axb2y, find x and y.

Exercise 2.2 | Q 18.1 | Page 26

If a and b are different positive primes such that

(a-1b2a2b-4)7÷(a3b-5a-2b3)=axby, find x and y.

Exercise 2.2 | Q 18.2 | Page 26

If a and b are different positive primes such that

(a+b)-1(a-1+b-1)=axby, find x + y + 2.

Exercise 2.2 | Q 19 | Page 26

If 2x×3y×5z=2160, find x, y and z. Hence, compute the value of 3x×2-y×5-z.

Exercise 2.2 | Q 20 | Page 26

If 1176 = 2a×3b×7c, find the values of a, b and c. Hence, compute the value of 2a×3b×7-c as a fraction.

Exercise 2.2 | Q 21.1 | Page 27

Simplify:

(xa+bxc)a-b(xb+cxa)b-c(xc+axb)c-a

Exercise 2.2 | Q 21.2 | Page 27

Simplify:

xlxmlm×xmxnmn×xnxlnl

Exercise 2.2 | Q 22 | Page 27

Show that:

(a+1b)m×(a-1b)n(b+1a)m×(b-1a)n=(ab)m+n

Exercise 2.2 | Q 23.1 | Page 27

If a=xm+nyl,b=xn+lym and c=xl+myn, Prove that am-nbn-lcl-m=1

Exercise 2.2 | Q 23.2 | Page 27

If x=am+n, y=an+l and z=al+m, prove that xmynzl=xnylzm

Exercise 2.3 [Pages 28 - 29]

RD Sharma solutions for Mathematics [English] Class 9 2 Exponents of Real Numbers Exercise 2.3 [Pages 28 - 29]

Exercise 2.3 | Q 1 | Page 28

Write (625)1/4 in decimal form.

Exercise 2.3 | Q 2 | Page 28

State the product law of exponents.

Exercise 2.3 | Q 3 | Page 28

State the quotient law of exponents.

Exercise 2.3 | Q 4 | Page 28

State the power law of exponents.

Exercise 2.3 | Q 5 | Page 28

If 24 × 42 =16x, then find the value of x.

Exercise 2.3 | Q 6 | Page 28

If 3x-1 = 9 and 4y+2 = 64, what is the value  of xy ?

Exercise 2.3 | Q 7 | Page 28

Write the value of  73×493.

Exercise 2.3 | Q 8 | Page 29

Write (19)1/2×(64)1/3 as a rational number.

Exercise 2.3 | Q 9 | Page 29

Write the value of 125×273.

Exercise 2.3 | Q 10 | Page 29

For any positive real number x, find the value of (xaxb)a+b×(xbxc)b+c×(xcxa)c+a.

Exercise 2.3 | Q 11 | Page 29

Write the value of {5(81/3+271/3)3}1/4.

Exercise 2.3 | Q 12 | Page 29

Simplify [{(625)1/2}1/4]2

Exercise 2.3 | Q 13 | Page 29

For any positive real number x, write the value of  {(xa)b}1ab{(xb)c}1bc{(xc)a}1ca

Exercise 2.3 | Q 14 | Page 29

If (x − 1)3 = 8, What is the value of (x + 1)2 ?

Exercise 2.4 [Pages 29 - 33]

RD Sharma solutions for Mathematics [English] Class 9 2 Exponents of Real Numbers Exercise 2.4 [Pages 29 - 33]

Exercise 2.4 | Q 1 | Page 29

The value of {23(23)3}3 is 

  • 5

  • 125

  • 1/5

  • -125

Exercise 2.4 | Q 2 | Page 29

The value of x − yx-y when x = 2 and y = −2 is

  • 18

  • -18

  • 14

  • -14

Exercise 2.4 | Q 3 | Page 29

The product of the square root of x with the cube root of x is

  •  cube root of the square root of x

  • sixth root of the fifth power of x

  •  fifth root of the sixth power of x

  • sixth root of x

Exercise 2.4 | Q 4 | Page 29

The seventh root of x divided by the eighth root of x is

  • x

  • x

  • x56

  • 1x56

Exercise 2.4 | Q 5 | Page 29

The square root of 64 divided by the cube root of 64 is

  • 64

  • 2

  • 12

  • 642/3

Exercise 2.4 | Q 6 | Page 30

Which of the following is (are) not equal to {(56)1/5}1/6 ?

  • {(56)15}36

  • 1{(56)1/5}1/6

  • (65)1/30

  • (56)1/30

Exercise 2.4 | Q 7 | Page 30

When simplified (x1+y1)1 is equal to

  • xy

  • x+y

  • xyy+x

  • x+yxy

Exercise 2.4 | Q 8 | Page 30

If 8x+1 = 64 , what is the value of 32x+1 ?

  • 1

  • 3

  • 9

  • 27

Exercise 2.4 | Q 9 | Page 30

If (23)2 = 4x, then 3x =

  • 3

  • 6

  • 9

  • 27

Exercise 2.4 | Q 10 | Page 30

If x-2 = 64, then x1/3+x0 =

  • 2

  • 3

  • 3/2

  • 2/3

Exercise 2.4 | Q 11 | Page 30

When simplified (127)2/3 is 

  • 9

  • -9

  • 19

  • 19

Exercise 2.4 | Q 12 | Page 30

Which one of the following is not equal to (83)1/2?

  • 231/2

  • 81/6

  • 1(83)1/2

  • 12

Exercise 2.4 | Q 13 | Page 30

Which one of the following is not equal to (1009)3/2?

  • (9100)3/2

  • (11009)3/2

  • 310×310×310

  • 1009×1009×1009

Exercise 2.4 | Q 14 | Page 30

If a, b, c are positive real numbers, then  a1b×b1c×c1a is equal to

  • 1

  • abc

  • abc

  • 1abc

Exercise 2.4 | Q 15 | Page 30

 (23)x(32)2x=8116then x

  • 2

  • 3

  • 4

  • 1

Exercise 2.4 | Q 16 | Page 31

The value of {84/3÷22}1/2 is

  • 12

  • 2

  • 14

  • 4

Exercise 2.4 | Q 17 | Page 31

If a, b, c are positive real numbers, then  3125a10b5c105  is equal to

  •  5a2bc2

  • 25ab2c

  •  5a3bc3

  • 125a2bc2

Exercise 2.4 | Q 18 | Page 31

If a, m, n are positive ingegers, then {anm}mn is equal to

  • amn

  • a

  • am/n

  • 1

Exercise 2.4 | Q 19 | Page 31

If x = 2 and y = 4, then (xy)xy+(yx)yx=

  • 4

  • 8

  • 12

  • 2

Exercise 2.4 | Q 20 | Page 31

The value of m for which [{(172)2}1/3]1/4=7m, is

  • 13

  • 14

  • -3

  • 2

Exercise 2.4 | Q 21 | Page 31

The value of {(23+22)2/3+(14019)1/2}2, is 

  • 196

  • 289

  • 324

  • 400

Exercise 2.4 | Q 22 | Page 31

(256)0.16 × (256)0.09

  • 4

  • 16

  • 64

  • 256.25

Exercise 2.4 | Q 23 | Page 31

If 102y = 25, then 10-y equals

  • 15
  • 150
  • 1625
  • 15
Exercise 2.4 | Q 24 | Page 31

If 9x+2 = 240 + 9x, then x =

  • 0.5

  • 0.2

  • 0.4

  • 0.1

Exercise 2.4 | Q 25 | Page 31

If x is a positive real number and x2 = 2, then x3 =

  • 2

  • 22

  • 32

  • 4

Exercise 2.4 | Q 26 | Page 31

If xx1.5=8x1 and x > 0, then x =

  • 24

  • 22

  • 4

  • 64

Exercise 2.4 | Q 27 | Page 32

If g = t23+4t-12, what is the value of g when t = 64?

  • 312

  • 332

  • 16

  • 25716

Exercise 2.4 | Q 28 | Page 32

If 4x4x1=24, then (2x)x equals

  • 55

  • 5

  • 255

  • 125

Exercise 2.4 | Q 29 | Page 32

When simplified (256)(43/2) is

  • 8

  • 18

  • 2

  • 12

Exercise 2.4 | Q 30 | Page 32

If 32x8225=535x,  then x =

  • 2

  • 3

  • 5

  • 4

Exercise 2.4 | Q 31 | Page 32

The value of 64-1/3 (641/3-642/3), is

  • 1

  • 13

  • -3

  • -2

Exercise 2.4 | Q 32 | Page 32

If 5n=125 then  5n64=

  • 25

  • 1125

  • 625 

  • 15

Exercise 2.4 | Q 33 | Page 32

If (16)2x+3 =(64)x+3, then 42x-2 =

  • 64

  • 256

  • 32

  • 512

Exercise 2.4 | Q 34 | Page 32

If 2m×12m=14, then 114{(4m)1/2+(15m)1}  is equal to

  • 12
  • 2

  • 4

  • 14

Exercise 2.4 | Q 35 | Page 32

If 2m+n2nm=16, 3p3n=81 and a=21/10,than  a2m+np(am2n+2p)1=

  • 2

  • 14
  • 9

  • 18
Exercise 2.4 | Q 36 | Page 32

If 35x×812×656132x=37  then x =

  • 3

  • -3

  • 13

  • 13

Exercise 2.4 | Q 37 | Page 33

If o <y <x, which statement must be true?

  • xy=xy

  • x+x=2x

  • xy=yx

  • xy=xy

Exercise 2.4 | Q 38 | Page 33

If 10x = 64, what is the value of 10x2+1?

  • 18

  • 42

  • 80

  • 81

Exercise 2.4 | Q 39 | Page 33

5n+26×5n+113×5n2×5n+1  is equal to

  • 53

  • 53

  • 35

  • 35

Exercise 2.4 | Q 40 | Page 33

If 2n=1024, then 32(n44)=

  • 3

  • 9

  • 27

  • 81

Solutions for 2: Exponents of Real Numbers

Exercise 2.1Exercise 2.2Exercise 2.3Exercise 2.4
RD Sharma solutions for Mathematics [English] Class 9 chapter 2 - Exponents of Real Numbers - Shaalaa.com

RD Sharma solutions for Mathematics [English] Class 9 chapter 2 - Exponents of Real Numbers

Shaalaa.com has the CBSE Mathematics Mathematics [English] Class 9 CBSE solutions in a manner that help students grasp basic concepts better and faster. The detailed, step-by-step solutions will help you understand the concepts better and clarify any confusion. RD Sharma solutions for Mathematics Mathematics [English] Class 9 CBSE 2 (Exponents of Real Numbers) include all questions with answers and detailed explanations. This will clear students' doubts about questions and improve their application skills while preparing for board exams.

Further, we at Shaalaa.com provide such solutions so students can prepare for written exams. RD Sharma textbook solutions can be a core help for self-study and provide excellent self-help guidance for students.

Concepts covered in Mathematics [English] Class 9 chapter 2 Exponents of Real Numbers are Introduction of Real Number, Concept of Irrational Numbers, Real Numbers and Their Decimal Expansions, Representing Real Numbers on the Number Line, Operations on Real Numbers, Laws of Exponents for Real Numbers.

Using RD Sharma Mathematics [English] Class 9 solutions Exponents of Real Numbers exercise by students is an easy way to prepare for the exams, as they involve solutions arranged chapter-wise and also page-wise. The questions involved in RD Sharma Solutions are essential questions that can be asked in the final exam. Maximum CBSE Mathematics [English] Class 9 students prefer RD Sharma Textbook Solutions to score more in exams.

Get the free view of Chapter 2, Exponents of Real Numbers Mathematics [English] Class 9 additional questions for Mathematics Mathematics [English] Class 9 CBSE, and you can use Shaalaa.com to keep it handy for your exam preparation.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.