Advertisements
Advertisements
Question
If `x = a^(m+n),` `y=a^(n+l)` and `z=a^(l+m),` prove that `x^my^nz^l=x^ny^lz^m`
Solution
Given `x = a^(m+n),` `y=a^(n+l)` and `z=a^(l+m)`
Putting the values ofx, y and z in `x^my^nz^l,` we get
`x^my^nz^l`
`=(a^(m+n))^m(a^(n+l))^n(a^(l+m))^l`
`=(a^(m^2+nm))(a^(n^2+ln))(a^(l^2+lm))`
`=a^(m^2+n^2+l^2+nm+ln+lm)`
Putting the values of x, y and z in `x^ny^lz^m,` we get
`x^ny^lz^m`
`=(a^(m+n))^n(a^(n+l))^l(a^(l+m))^m`
`=(a^(mn+n^2))(a^(nl+l^2))(a^(lm+m^2))`
`=a^(mn+n^2+nl+l^2+lm+m^2)`
So, `x^my^nz^l=x^ny^lz^m`
APPEARS IN
RELATED QUESTIONS
Simplify the following
`3(a^4b^3)^10xx5(a^2b^2)^3`
Assuming that x, y, z are positive real numbers, simplify the following:
`(sqrt2/sqrt3)^5(6/7)^2`
Prove that:
`(3^-3xx6^2xxsqrt98)/(5^2xxroot3(1/25)xx(15)^(-4/3)xx3^(1/3))=28sqrt2`
Prove that:
`((0.6)^0-(0.1)^-1)/((3/8)^-1(3/2)^3+((-1)/3)^-1)=(-3)/2`
Show that:
`[{x^(a(a-b))/x^(a(a+b))}div{x^(b(b-a))/x^(b(b+a))}]^(a+b)=1`
Solve the following equation:
`3^(x+1)=27xx3^4`
If `2^x xx3^yxx5^z=2160,` find x, y and z. Hence, compute the value of `3^x xx2^-yxx5^-z.`
If o <y <x, which statement must be true?
The simplest rationalising factor of \[\sqrt[3]{500}\] is
The value of \[\frac{\sqrt{48} + \sqrt{32}}{\sqrt{27} + \sqrt{18}}\] is