Advertisements
Advertisements
Question
Show that:
`[{x^(a(a-b))/x^(a(a+b))}div{x^(b(b-a))/x^(b(b+a))}]^(a+b)=1`
Solution
`[{x^(a(a-b))/x^(a(a+b))}div{x^(b(b-a))/x^(b(b+a))}]^(a+b)=1`
LHS = `[{x^(a(a-b))/x^(a(a+b))}div{x^(b(b-a))/x^(b(b+a))}]^(a+b)`
`=[{x^(a(a-b))/x^(a(a+b))}xx{x^(b(b+a))/x^(b(b-a))}]^(a+b)`
`=[{x^(a^2-ab)/x^(a^2+ab)}xx{x^(b^2+ab)/x^(b^2-ab)}]^(a+b)`
`=[{x^(a^2-ab-a^2-ab)}xx{x^(b^2+ab-b^2+ab)}]^(a+b)`
`=[x^(-2ab)xx x^(2ab)]^(a+b)`
`=[x^(-2ab+2ab)]^(a+b)`
`=[x^0]^(a+b)`
= 1
= RHS
APPEARS IN
RELATED QUESTIONS
Find:-
`64^(1/2)`
Simplify the following
`((x^2y^2)/(a^2b^3))^n`
Prove that:
`sqrt(3xx5^-3)divroot3(3^-1)sqrt5xxroot6(3xx5^6)=3/5`
If `3^(x+1)=9^(x-2),` find the value of `2^(1+x)`
Solve the following equation:
`3^(x+1)=27xx3^4`
Solve the following equation:
`4^(2x)=(root3 16)^(-6/y)=(sqrt8)^2`
The square root of 64 divided by the cube root of 64 is
If a, b, c are positive real numbers, then \[\sqrt[5]{3125 a^{10} b^5 c^{10}}\] is equal to
The value of \[\sqrt{5 + 2\sqrt{6}}\] is
Find:-
`125^(1/3)`