English

Show That: `(X^(1/(A-b)))^(1/(A-c))(X^(1/(B-c)))^(1/(B-a))(X^(1/(C-a)))^(1/(C-b))=1` - Mathematics

Advertisements
Advertisements

Question

Show that:

`(x^(1/(a-b)))^(1/(a-c))(x^(1/(b-c)))^(1/(b-a))(x^(1/(c-a)))^(1/(c-b))=1`

Solution

`(x^(1/(a-b)))^(1/(a-c))(x^(1/(b-c)))^(1/(b-a))(x^(1/(c-a)))^(1/(c-b))=1`

LHS = `(x^(1/(a-b)))^(1/(a-c))(x^(1/(b-c)))^(1/(b-a))(x^(1/(c-a)))^(1/(c-b))`

`=(x)^(1/(a-b)xx1/(a-c))(x)^(1/(b-c)xx1/(b-a))(x)^(1/(c-a)xx1/(c-b))`

`=(x)^(1/(a-b)xx1/(a-c)+1/(b-c)xx1/(b-a)+1/(c-a)xx1/(c-b))`

`=(x)^(((b-c)-(a-c)+(a-b))/((a-b)(a-c)(b-c)))`

`=x^0`

= 1

= RHS

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Exponents of Real Numbers - Exercise 2.2 [Page 25]

APPEARS IN

RD Sharma Mathematics [English] Class 9
Chapter 2 Exponents of Real Numbers
Exercise 2.2 | Q 4.3 | Page 25

Video TutorialsVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×