Advertisements
Advertisements
Question
Show that:
`(x^(1/(a-b)))^(1/(a-c))(x^(1/(b-c)))^(1/(b-a))(x^(1/(c-a)))^(1/(c-b))=1`
Solution
`(x^(1/(a-b)))^(1/(a-c))(x^(1/(b-c)))^(1/(b-a))(x^(1/(c-a)))^(1/(c-b))=1`
LHS = `(x^(1/(a-b)))^(1/(a-c))(x^(1/(b-c)))^(1/(b-a))(x^(1/(c-a)))^(1/(c-b))`
`=(x)^(1/(a-b)xx1/(a-c))(x)^(1/(b-c)xx1/(b-a))(x)^(1/(c-a)xx1/(c-b))`
`=(x)^(1/(a-b)xx1/(a-c)+1/(b-c)xx1/(b-a)+1/(c-a)xx1/(c-b))`
`=(x)^(((b-c)-(a-c)+(a-b))/((a-b)(a-c)(b-c)))`
`=x^0`
= 1
= RHS
APPEARS IN
RELATED QUESTIONS
Simplify the following
`(2x^-2y^3)^3`
Show that:
`(a^(x+1)/a^(y+1))^(x+y)(a^(y+2)/a^(z+2))^(y+z)(a^(z+3)/a^(x+3))^(z+x)=1`
State the power law of exponents.
If 24 × 42 =16x, then find the value of x.
For any positive real number x, find the value of \[\left( \frac{x^a}{x^b} \right)^{a + b} \times \left( \frac{x^b}{x^c} \right)^{b + c} \times \left( \frac{x^c}{x^a} \right)^{c + a}\].
The value of \[\left\{ 2 - 3 (2 - 3 )^3 \right\}^3\] is
Which of the following is (are) not equal to \[\left\{ \left( \frac{5}{6} \right)^{1/5} \right\}^{- 1/6}\] ?
If \[\frac{x}{x^{1 . 5}} = 8 x^{- 1}\] and x > 0, then x =
If g = `t^(2/3) + 4t^(-1/2)`, what is the value of g when t = 64?
If x = \[\frac{2}{3 + \sqrt{7}}\],then (x−3)2 =