Advertisements
Advertisements
Question
State the power law of exponents.
Solution
The "power rule" tell us that to raise a power to a power, just multiply the exponents.
If a is any real number and m, n are positive integers, then `(a^m)^n = a^(mn)`
We have,
`(a^m)^n = a^m xx a^m xx a^m xx ....n ` factors
`(a^m)^n = (a xx a xx a xx... m ) xx (a xx a xx a xx... m ).... n `factors
`(a^m)^n =(a xx a xx a xx... m )`
Hence, `(a^m)^n = a^(mn)`
APPEARS IN
RELATED QUESTIONS
Simplify:
`(16^(-1/5))^(5/2)`
If 2x = 3y = 6-z, show that `1/x+1/y+1/z=0`
If 1176 = `2^axx3^bxx7^c,` find the values of a, b and c. Hence, compute the value of `2^axx3^bxx7^-c` as a fraction.
For any positive real number x, find the value of \[\left( \frac{x^a}{x^b} \right)^{a + b} \times \left( \frac{x^b}{x^c} \right)^{b + c} \times \left( \frac{x^c}{x^a} \right)^{c + a}\].
When simplified \[( x^{- 1} + y^{- 1} )^{- 1}\] is equal to
If x-2 = 64, then x1/3+x0 =
If \[\frac{3^{5x} \times {81}^2 \times 6561}{3^{2x}} = 3^7\] then x =
\[\frac{1}{\sqrt{9} - \sqrt{8}}\] is equal to
The value of \[\sqrt{3 - 2\sqrt{2}}\] is
If \[\sqrt{2} = 1 . 414,\] then the value of \[\sqrt{6} - \sqrt{3}\] upto three places of decimal is