Advertisements
Advertisements
प्रश्न
State the power law of exponents.
उत्तर
The "power rule" tell us that to raise a power to a power, just multiply the exponents.
If a is any real number and m, n are positive integers, then `(a^m)^n = a^(mn)`
We have,
`(a^m)^n = a^m xx a^m xx a^m xx ....n ` factors
`(a^m)^n = (a xx a xx a xx... m ) xx (a xx a xx a xx... m ).... n `factors
`(a^m)^n =(a xx a xx a xx... m )`
Hence, `(a^m)^n = a^(mn)`
APPEARS IN
संबंधित प्रश्न
Simplify:
`(sqrt2/5)^8div(sqrt2/5)^13`
Prove that:
`(1/4)^-2-3xx8^(2/3)xx4^0+(9/16)^(-1/2)=16/3`
Solve the following equation:
`4^(2x)=(root3 16)^(-6/y)=(sqrt8)^2`
If `a=x^(m+n)y^l, b=x^(n+l)y^m` and `c=x^(l+m)y^n,` Prove that `a^(m-n)b^(n-l)c^(l-m)=1`
Simplify \[\left[ \left\{ \left( 625 \right)^{- 1/2} \right\}^{- 1/4} \right]^2\]
If g = `t^(2/3) + 4t^(-1/2)`, what is the value of g when t = 64?
The simplest rationalising factor of \[\sqrt{3} + \sqrt{5}\] is ______.
If \[x + \sqrt{15} = 4,\] then \[x + \frac{1}{x}\] =
If \[\sqrt{13 - a\sqrt{10}} = \sqrt{8} + \sqrt{5}, \text { then a } =\]
Which of the following is equal to x?