Advertisements
Advertisements
प्रश्न
The simplest rationalising factor of \[\sqrt{3} + \sqrt{5}\] is ______.
पर्याय
`sqrt3 - 5`
`3 - sqrt5`
`sqrt3 - sqrt5`
`sqrt3 + sqrt5`
उत्तर
The simplest rationalising factor of `sqrt3 + sqrt5` is `bbunderline(sqrt3 - sqrt5)`.
Explanation:
The simplest rationalising factor of `sqrt3 + sqrt5` is `sqrt3 - sqrt5` as `(sqrta + sqrtb)(sqrta - sqrtb) = a - b`.
APPEARS IN
संबंधित प्रश्न
Simplify the following
`(4ab^2(-5ab^3))/(10a^2b^2)`
Prove that:
`(a^-1+b^-1)^-1=(ab)/(a+b)`
Prove that:
`9^(3/2)-3xx5^0-(1/81)^(-1/2)=15`
Show that:
`{(x^(a-a^-1))^(1/(a-1))}^(a/(a+1))=x`
Show that:
`(a^(x+1)/a^(y+1))^(x+y)(a^(y+2)/a^(z+2))^(y+z)(a^(z+3)/a^(x+3))^(z+x)=1`
If ax = by = cz and b2 = ac, show that `y=(2zx)/(z+x)`
Find the value of x in the following:
`2^(x-7)xx5^(x-4)=1250`
If 3x-1 = 9 and 4y+2 = 64, what is the value of \[\frac{x}{y}\] ?
When simplified \[\left( - \frac{1}{27} \right)^{- 2/3}\] is
\[\frac{5^{n + 2} - 6 \times 5^{n + 1}}{13 \times 5^n - 2 \times 5^{n + 1}}\] is equal to