Advertisements
Advertisements
प्रश्न
Prove that:
`9^(3/2)-3xx5^0-(1/81)^(-1/2)=15`
उत्तर
we have to prove that `9^(3/2)-3xx5^0-(1/81)^(-1/2)=15`
`9^(3/2)-3xx5^0-(1/81)^(-1/2)=3^(2xx3/2)-3xx5^0-1/81^(-1/2)`
`=3^3-3xx1-1/(1/sqrt81)`
`=3^3-3-1/(1/root2(9xx9))`
`=27-3-1/(1/9)`
`=27-3-1xx9/1`
= 27 - 12
= 15
Hence `9^(3/2)-3xx5^0-(1/81)^(-1/2)=15`
APPEARS IN
संबंधित प्रश्न
Simplify the following
`((4xx10^7)(6xx10^-5))/(8xx10^4)`
Solve the following equation for x:
`4^(2x)=1/32`
Simplify:
`root5((32)^-3)`
If `27^x=9/3^x,` find x.
Find the value of x in the following:
`(2^3)^4=(2^2)^x`
If `3^(4x) = (81)^-1` and `10^(1/y)=0.0001,` find the value of ` 2^(-x+4y)`.
Write \[\left( 625 \right)^{- 1/4}\] in decimal form.
If \[8^{x + 1}\] = 64 , what is the value of \[3^{2x + 1}\] ?
If a, b, c are positive real numbers, then \[\sqrt[5]{3125 a^{10} b^5 c^{10}}\] is equal to
Find:-
`125^((-1)/3)`