Advertisements
Advertisements
प्रश्न
If `27^x=9/3^x,` find x.
उत्तर
We are given `27^x=9/3^x`
We have to find the value of x
Since `(3^3)^x=3^2/3^x`
By using the law of exponents `a^m/a^n=a^(m-n)` we get,
`3^(3x)=3^(2-x)`
on equating the exponents we get,
3x = 2 - x
3x + x = 2
4x = 2
x = 2/4
x = 1/2
Hence, `x=1/2`
APPEARS IN
संबंधित प्रश्न
Simplify the following
`(4ab^2(-5ab^3))/(10a^2b^2)`
Simplify the following:
`(3^nxx9^(n+1))/(3^(n-1)xx9^(n-1))`
Assuming that x, y, z are positive real numbers, simplify the following:
`(sqrt(x^-3))^5`
Show that:
`(x^(a^2+b^2)/x^(ab))^(a+b)(x^(b^2+c^2)/x^(bc))^(b+c)(x^(c^2+a^2)/x^(ac))^(a+c)=x^(2(a^3+b^3+c^3))`
Solve the following equation:
`4^(2x)=(root3 16)^(-6/y)=(sqrt8)^2`
State the power law of exponents.
Write the value of \[\sqrt[3]{125 \times 27}\].
If 102y = 25, then 10-y equals
The simplest rationalising factor of \[2\sqrt{5}-\]\[\sqrt{3}\] is
If \[\sqrt{2} = 1 . 4142\] then \[\sqrt{\frac{\sqrt{2} - 1}{\sqrt{2} + 1}}\] is equal to