Advertisements
Advertisements
प्रश्न
Find the value of x in the following:
`2^(5x)div2x=root5(2^20)`
उत्तर
Given `2^(5x)div2x=root5(2^20)`
By using rational exponents `a^m/a^n=a^(m-n)` we get,
`2^(5x-x)=2^(20xx1/5)`
`2^(5x-x)=2^4`
On equating the exponents we get,
5x - x = 4
4x = 4
x = 4/4
x = 1
The value of x = 1
APPEARS IN
संबंधित प्रश्न
Solve the following equation for x:
`4^(x-1)xx(0.5)^(3-2x)=(1/8)^x`
Assuming that x, y, z are positive real numbers, simplify the following:
`sqrt(x^3y^-2)`
Show that:
`(3^a/3^b)^(a+b)(3^b/3^c)^(b+c)(3^c/3^a)^(c+a)=1`
If 3x = 5y = (75)z, show that `z=(xy)/(2x+y)`
If `27^x=9/3^x,` find x.
Find the value of x in the following:
`2^(x-7)xx5^(x-4)=1250`
Find the value of x in the following:
`(sqrt(3/5))^(x+1)=125/27`
If a and b are distinct primes such that `root3 (a^6b^-4)=a^xb^(2y),` find x and y.
Write the value of \[\left\{ 5( 8^{1/3} + {27}^{1/3} )^3 \right\}^{1/4} . \]
If a, b, c are positive real numbers, then \[\sqrt[5]{3125 a^{10} b^5 c^{10}}\] is equal to