Advertisements
Advertisements
प्रश्न
Solve the following equation for x:
`4^(x-1)xx(0.5)^(3-2x)=(1/8)^x`
उत्तर
`4^(x-1)xx(0.5)^(3-2x)=(1/8)^x`
`rArr(2^2)^(x-1)xx(1/2)^(3-2x)=(1/2^3)^x`
`rArr(2^2)^(x-1)xx(2^-1)^(3-2x)=(2^-3)^x`
`rArr2^(2x-2)xx2^(2x-3)=2^(-3x)`
`rArr2^(2x-2+2x-3)=2^(-3x)`
`rArr2^(4x-5)=2^(-3x)`
⇒ 4x - 5 = -3x
⇒ 4x + 3x = 5
⇒ 7x = 5
`rArr x = 5/7`
APPEARS IN
संबंधित प्रश्न
Simplify the following:
`(6(8)^(n+1)+16(2)^(3n-2))/(10(2)^(3n+1)-7(8)^n)`
Solve the following equation for x:
`7^(2x+3)=1`
Solve the following equation for x:
`4^(2x)=1/32`
Prove that:
`sqrt(1/4)+(0.01)^(-1/2)-(27)^(2/3)=3/2`
Show that:
`(x^(1/(a-b)))^(1/(a-c))(x^(1/(b-c)))^(1/(b-a))(x^(1/(c-a)))^(1/(c-b))=1`
If 1176 = `2^axx3^bxx7^c,` find the values of a, b and c. Hence, compute the value of `2^axx3^bxx7^-c` as a fraction.
If x-2 = 64, then x1/3+x0 =
The value of \[\left\{ 8^{- 4/3} \div 2^{- 2} \right\}^{1/2}\] is
If 102y = 25, then 10-y equals
If 9x+2 = 240 + 9x, then x =