Advertisements
Advertisements
Question
Solve the following equation for x:
`4^(x-1)xx(0.5)^(3-2x)=(1/8)^x`
Solution
`4^(x-1)xx(0.5)^(3-2x)=(1/8)^x`
`rArr(2^2)^(x-1)xx(1/2)^(3-2x)=(1/2^3)^x`
`rArr(2^2)^(x-1)xx(2^-1)^(3-2x)=(2^-3)^x`
`rArr2^(2x-2)xx2^(2x-3)=2^(-3x)`
`rArr2^(2x-2+2x-3)=2^(-3x)`
`rArr2^(4x-5)=2^(-3x)`
⇒ 4x - 5 = -3x
⇒ 4x + 3x = 5
⇒ 7x = 5
`rArr x = 5/7`
APPEARS IN
RELATED QUESTIONS
Simplify the following:
`(6(8)^(n+1)+16(2)^(3n-2))/(10(2)^(3n+1)-7(8)^n)`
Prove that:
`(64/125)^(-2/3)+1/(256/625)^(1/4)+(sqrt25/root3 64)=65/16`
Find the value of x in the following:
`2^(x-7)xx5^(x-4)=1250`
Determine `(8x)^x,`If `9^(x+2)=240+9^x`
If a and b are different positive primes such that
`((a^-1b^2)/(a^2b^-4))^7div((a^3b^-5)/(a^-2b^3))=a^xb^y,` find x and y.
State the product law of exponents.
Write the value of \[\left\{ 5( 8^{1/3} + {27}^{1/3} )^3 \right\}^{1/4} . \]
If \[4x - 4 x^{- 1} = 24,\] then (2x)x equals
If \[2^{- m} \times \frac{1}{2^m} = \frac{1}{4},\] then \[\frac{1}{14}\left\{ ( 4^m )^{1/2} + \left( \frac{1}{5^m} \right)^{- 1} \right\}\] is equal to
The positive square root of \[7 + \sqrt{48}\] is