Advertisements
Advertisements
Question
Simplify the following:
`(6(8)^(n+1)+16(2)^(3n-2))/(10(2)^(3n+1)-7(8)^n)`
Solution
`(6(8)^(n+1)+16(2)^(3n-2))/(10(2)^(3n+1)-7(8)^n)`
`=(6(2^3)^(n+1)+16(2)^(3n-2))/(10(2)^(3n+1)-7(2^3)^n)`
`=(6(2^(3n+3))+16(2)^(3n-2))/(10(2)^(3n+1)-7(2^(3n)))`
`=(6xx2^(3n)(2^3)+16(2)^(3n)2^-2)/(10(2)^(3n)(2^1)-7(2^(3n)))`
`=(2^(3n)((6xx2^3)+(16xx1/2^2)))/(2^(3n)((10xx2)-7))`
`=((6xx8)+(16xx1/4))/(20-7)`
`=(48+4)/(13)`
`=52/13`
= 4
APPEARS IN
RELATED QUESTIONS
Simplify:
`((5^-1xx7^2)/(5^2xx7^-4))^(7/2)xx((5^-2xx7^3)/(5^3xx7^-5))^(-5/2)`
Prove that:
`(3^-3xx6^2xxsqrt98)/(5^2xxroot3(1/25)xx(15)^(-4/3)xx3^(1/3))=28sqrt2`
If a and b are different positive primes such that
`((a^-1b^2)/(a^2b^-4))^7div((a^3b^-5)/(a^-2b^3))=a^xb^y,` find x and y.
If (23)2 = 4x, then 3x =
If x-2 = 64, then x1/3+x0 =
When simplified \[\left( - \frac{1}{27} \right)^{- 2/3}\] is
If 9x+2 = 240 + 9x, then x =
If x is a positive real number and x2 = 2, then x3 =
If \[4x - 4 x^{- 1} = 24,\] then (2x)x equals
The simplest rationalising factor of \[\sqrt{3} + \sqrt{5}\] is ______.