Advertisements
Advertisements
प्रश्न
Simplify the following:
`(6(8)^(n+1)+16(2)^(3n-2))/(10(2)^(3n+1)-7(8)^n)`
उत्तर
`(6(8)^(n+1)+16(2)^(3n-2))/(10(2)^(3n+1)-7(8)^n)`
`=(6(2^3)^(n+1)+16(2)^(3n-2))/(10(2)^(3n+1)-7(2^3)^n)`
`=(6(2^(3n+3))+16(2)^(3n-2))/(10(2)^(3n+1)-7(2^(3n)))`
`=(6xx2^(3n)(2^3)+16(2)^(3n)2^-2)/(10(2)^(3n)(2^1)-7(2^(3n)))`
`=(2^(3n)((6xx2^3)+(16xx1/2^2)))/(2^(3n)((10xx2)-7))`
`=((6xx8)+(16xx1/4))/(20-7)`
`=(48+4)/(13)`
`=52/13`
= 4
APPEARS IN
संबंधित प्रश्न
Simplify the following:
`(5^(n+3)-6xx5^(n+1))/(9xx5^x-2^2xx5^n)`
Solve the following equation for x:
`4^(2x)=1/32`
Prove that:
`sqrt(3xx5^-3)divroot3(3^-1)sqrt5xxroot6(3xx5^6)=3/5`
If 2x = 3y = 6-z, show that `1/x+1/y+1/z=0`
If ax = by = cz and b2 = ac, show that `y=(2zx)/(z+x)`
If a, b, c are positive real numbers, then \[\sqrt{a^{- 1} b} \times \sqrt{b^{- 1} c} \times \sqrt{c^{- 1} a}\] is equal to
If x = 2 and y = 4, then \[\left( \frac{x}{y} \right)^{x - y} + \left( \frac{y}{x} \right)^{y - x} =\]
The value of m for which \[\left[ \left\{ \left( \frac{1}{7^2} \right)^{- 2} \right\}^{- 1/3} \right]^{1/4} = 7^m ,\] is
If \[\sqrt{2^n} = 1024,\] then \[{3^2}^\left( \frac{n}{4} - 4 \right) =\]
If \[\frac{5 - \sqrt{3}}{2 + \sqrt{3}} = x + y\sqrt{3}\] , then