Advertisements
Advertisements
प्रश्न
Prove that:
`sqrt(3xx5^-3)divroot3(3^-1)sqrt5xxroot6(3xx5^6)=3/5`
उत्तर
we have to prove that `sqrt(3xx5^-3)/(root3(3^-1)sqrt5)xxroot6(3xx5^6)=3/5`
By using rational exponents `a^-n=1/a^n` we get,
`sqrt(3xx5^-3)/(root3(3^-1)sqrt5)xxroot6(3xx5^6)=sqrt(3xx1/5^3)/(root3(1/3)sqrt5)xxroot6(3xx5^6)`
`=(3^(1/2)xx1/5^(3xx1/2))/(1/3^(1/3)xx5^(1/2))xx3^(1/6)xx5^(6xx1/6)`
`=(3^(1/2)/5^(3/2))/(5^(1/2)/3^(1/3))xx3^(1/6)xx5^1`
`=3^(1/2)/5^(3/2)xx3^(1/3)/5^(1/2)xx3^(1/6)xx5^1`
`=3^(1/2)xx3^(1/3)xx5^(-3/2)xx5^(-1/2)xx3^(1/6)xx5^1`
`=3^(1/2+1/3+1/6)xx5^(-3/2-1/2+1)`
`=3^((1xx3)/(2xx3)+(1xx2)/(3xx2)+1/6)xx5^(-3/2-1/2+(1xx2)/(1xx2))`
`=3^((3+2+1)/6)xx5^((-3-1+2)/2)`
`=3^1xx5^-1`
`=3xx1/5`
`=3/5`
Hence `sqrt(3xx5^-3)/(root3(3^-1)sqrt5)xxroot6(3xx5^6)=3/5`
APPEARS IN
संबंधित प्रश्न
Simplify the following
`(4ab^2(-5ab^3))/(10a^2b^2)`
If a = 3 and b = -2, find the values of :
aa + bb
Simplify:
`(0.001)^(1/3)`
Find the value of x in the following:
`5^(2x+3)=1`
Simplify:
`root(lm)(x^l/x^m)xxroot(mn)(x^m/x^n)xxroot(nl)(x^n/x^l)`
Write the value of \[\left\{ 5( 8^{1/3} + {27}^{1/3} )^3 \right\}^{1/4} . \]
For any positive real number x, write the value of \[\left\{ \left( x^a \right)^b \right\}^\frac{1}{ab} \left\{ \left( x^b \right)^c \right\}^\frac{1}{bc} \left\{ \left( x^c \right)^a \right\}^\frac{1}{ca}\]
If \[\sqrt{2} = 1 . 4142\] then \[\sqrt{\frac{\sqrt{2} - 1}{\sqrt{2} + 1}}\] is equal to
Find:-
`32^(2/5)`
Simplify:
`7^(1/2) . 8^(1/2)`