Advertisements
Advertisements
प्रश्न
Find the value of x in the following:
`5^(2x+3)=1`
उत्तर
Given `5^(2x+3)=1`
`5^(2x+3)=5^0`
On equating the exponents we get
⇒ 2x + 3 = 0
⇒ 2x = -3
`rArr x = (-3)/2`
APPEARS IN
संबंधित प्रश्न
If `a=xy^(p-1), b=xy^(q-1)` and `c=xy^(r-1),` prove that `a^(q-r)b^(r-p)c^(p-q)=1`
Assuming that x, y, z are positive real numbers, simplify the following:
`(sqrt2/sqrt3)^5(6/7)^2`
State the power law of exponents.
The seventh root of x divided by the eighth root of x is
When simplified \[\left( - \frac{1}{27} \right)^{- 2/3}\] is
If a, b, c are positive real numbers, then \[\sqrt[5]{3125 a^{10} b^5 c^{10}}\] is equal to
The value of \[\left\{ \left( 23 + 2^2 \right)^{2/3} + (140 - 19 )^{1/2} \right\}^2 ,\] is
The value of \[\frac{\sqrt{48} + \sqrt{32}}{\sqrt{27} + \sqrt{18}}\] is
The positive square root of \[7 + \sqrt{48}\] is
If `a = 2 + sqrt(3)`, then find the value of `a - 1/a`.