Advertisements
Advertisements
प्रश्न
When simplified \[\left( - \frac{1}{27} \right)^{- 2/3}\] is
विकल्प
9
-9
\[\frac{1}{9}\]
\[- \frac{1}{9}\]
उत्तर
We have to find the value of `(-1/27)^((-2)/3)`
So,
`(-1/27)^((-2)/3)` = `(-1/27)^((-2)/3)`
`= (-1/3^3)^((-2)/3)`
` = -1/(3^(3x(-2)/3`
` = -1/(3^(3x(-2)/3`
`(-1/27)^((-2)/3) = -1/3^-2`
`-1/(1/(3^2))`
`-1/(1/9)`
= 9
APPEARS IN
संबंधित प्रश्न
Simplify the following
`(4ab^2(-5ab^3))/(10a^2b^2)`
Assuming that x, y, z are positive real numbers, simplify the following:
`(sqrt(x^-3))^5`
Simplify:
`(sqrt2/5)^8div(sqrt2/5)^13`
If a and b are distinct primes such that `root3 (a^6b^-4)=a^xb^(2y),` find x and y.
Write \[\left( 625 \right)^{- 1/4}\] in decimal form.
If (16)2x+3 =(64)x+3, then 42x-2 =
If o <y <x, which statement must be true?
If \[x = \sqrt{6} + \sqrt{5}\],then \[x^2 + \frac{1}{x^2} - 2 =\]
Find:-
`16^(3/4)`
Simplify:
`7^(1/2) . 8^(1/2)`