Advertisements
Advertisements
प्रश्न
Write \[\left( 625 \right)^{- 1/4}\] in decimal form.
उत्तर
We have to write `(625)^(-1/4)`in decimal form. So,
\[\left( 625 \right)^\frac{- 1}{4} = \frac{1}{{625}^\frac{1}{4}}\]
\[ = \left( \frac{1}{\left( 5^4 \right)} \right)^\frac{1}{4}\]
`(625)^(-1/4) = (1 /5)^(4 xx 1/4)`
`=1/5`
= 0.2
Hence the decimal form of `(625)^(-1/4)` is 0.2
APPEARS IN
संबंधित प्रश्न
Simplify the following
`((x^2y^2)/(a^2b^3))^n`
If a = 3 and b = -2, find the values of :
ab + ba
Assuming that x, y, z are positive real numbers, simplify the following:
`(sqrt(x^-3))^5`
Prove that:
`9^(3/2)-3xx5^0-(1/81)^(-1/2)=15`
Show that:
`(a^(x+1)/a^(y+1))^(x+y)(a^(y+2)/a^(z+2))^(y+z)(a^(z+3)/a^(x+3))^(z+x)=1`
Determine `(8x)^x,`If `9^(x+2)=240+9^x`
State the power law of exponents.
The product of the square root of x with the cube root of x is
The value of \[\left\{ 8^{- 4/3} \div 2^{- 2} \right\}^{1/2}\] is
Simplify:
`(3/5)^4 (8/5)^-12 (32/5)^6`