Advertisements
Advertisements
प्रश्न
Simplify:
`(3/5)^4 (8/5)^-12 (32/5)^6`
उत्तर
`(3/5)^4 (8/5)^-12 (32/5)^6 = 3^4/5^4 xx (5/2^3)^12 xx (2^5/5)^6` ...`(∵ a^-1 = 1/a)`
= `3^4/5^4 xx 5^12/2^36 xx 2^30/5^6` ...[∵ (am)n = amn]
= `(3^4 xx 5^(12 - 4 - 6))/(2^(36 - 30))` ...`[∵ a^m/a^n = a^(m - n)]`
= `3^4/2^6 xx 5^2`
= `(81 xx 25)/64`
= `2025/64`
APPEARS IN
संबंधित प्रश्न
Simplify the following
`3(a^4b^3)^10xx5(a^2b^2)^3`
Prove that:
`1/(1+x^(a-b))+1/(1+x^(b-a))=1`
Solve the following equation for x:
`2^(3x-7)=256`
Prove that:
`9^(3/2)-3xx5^0-(1/81)^(-1/2)=15`
Prove that:
`(3^-3xx6^2xxsqrt98)/(5^2xxroot3(1/25)xx(15)^(-4/3)xx3^(1/3))=28sqrt2`
If `3^(4x) = (81)^-1` and `10^(1/y)=0.0001,` find the value of ` 2^(-x+4y)`.
The value of x − yx-y when x = 2 and y = −2 is
If x-2 = 64, then x1/3+x0 =
If \[\sqrt{2} = 1 . 414,\] then the value of \[\sqrt{6} - \sqrt{3}\] upto three places of decimal is
If \[x = \sqrt{6} + \sqrt{5}\],then \[x^2 + \frac{1}{x^2} - 2 =\]