Advertisements
Advertisements
Question
Simplify:
`(3/5)^4 (8/5)^-12 (32/5)^6`
Solution
`(3/5)^4 (8/5)^-12 (32/5)^6 = 3^4/5^4 xx (5/2^3)^12 xx (2^5/5)^6` ...`(∵ a^-1 = 1/a)`
= `3^4/5^4 xx 5^12/2^36 xx 2^30/5^6` ...[∵ (am)n = amn]
= `(3^4 xx 5^(12 - 4 - 6))/(2^(36 - 30))` ...`[∵ a^m/a^n = a^(m - n)]`
= `3^4/2^6 xx 5^2`
= `(81 xx 25)/64`
= `2025/64`
APPEARS IN
RELATED QUESTIONS
Prove that:
`(a^-1+b^-1)^-1=(ab)/(a+b)`
If abc = 1, show that `1/(1+a+b^-1)+1/(1+b+c^-1)+1/(1+c+a^-1)=1`
Simplify:
`((5^-1xx7^2)/(5^2xx7^-4))^(7/2)xx((5^-2xx7^3)/(5^3xx7^-5))^(-5/2)`
If `3^(4x) = (81)^-1` and `10^(1/y)=0.0001,` find the value of ` 2^(-x+4y)`.
When simplified \[\left( - \frac{1}{27} \right)^{- 2/3}\] is
If a, m, n are positive ingegers, then \[\left\{ \sqrt[m]{\sqrt[n]{a}} \right\}^{mn}\] is equal to
If g = `t^(2/3) + 4t^(-1/2)`, what is the value of g when t = 64?
If x = \[\frac{2}{3 + \sqrt{7}}\],then (x−3)2 =
If \[\sqrt{13 - a\sqrt{10}} = \sqrt{8} + \sqrt{5}, \text { then a } =\]
Simplify:
`7^(1/2) . 8^(1/2)`