Advertisements
Advertisements
Question
If `3^(4x) = (81)^-1` and `10^(1/y)=0.0001,` find the value of ` 2^(-x+4y)`.
Solution
It is given that `3^(4x) = (81)^-1` and `10^(1/y)=0.0001`
Now,
`3^(4x) = (81)^-1`
`rArr3^(4x)=(3^4)^(-1)`
`rArr(3^x)^4=(3^-1)^4`
`rArrx=-1`
And,
`10^(1/y)=0.0001`
`rArr10^(1/y)=1/10000`
`rArr10^(1/y)=(1/10)^4`
`rArr10^(1/y)=(10)^-4`
`rArr1/y=-4`
`rArry=-1/4`
Therefore, the value of `2^(-x+4y)` is `2^(1+4(-1/4))=2^0=1`.
APPEARS IN
RELATED QUESTIONS
Prove that:
`1/(1+x^(b-a)+x^(c-a))+1/(1+x^(a-b)+x^(c-b))+1/(1+x^(b-c)+x^(a-c))=1`
Prove that:
`9^(3/2)-3xx5^0-(1/81)^(-1/2)=15`
Prove that:
`(64/125)^(-2/3)+1/(256/625)^(1/4)+(sqrt25/root3 64)=65/16`
Prove that:
`((0.6)^0-(0.1)^-1)/((3/8)^-1(3/2)^3+((-1)/3)^-1)=(-3)/2`
Find the value of x in the following:
`2^(x-7)xx5^(x-4)=1250`
Solve the following equation:
`sqrt(a/b)=(b/a)^(1-2x),` where a and b are distinct primes.
For any positive real number x, find the value of \[\left( \frac{x^a}{x^b} \right)^{a + b} \times \left( \frac{x^b}{x^c} \right)^{b + c} \times \left( \frac{x^c}{x^a} \right)^{c + a}\].
If x-2 = 64, then x1/3+x0 =
If \[4x - 4 x^{- 1} = 24,\] then (2x)x equals
The simplest rationalising factor of \[\sqrt{3} + \sqrt{5}\] is ______.