Advertisements
Advertisements
Question
Prove that:
`((0.6)^0-(0.1)^-1)/((3/8)^-1(3/2)^3+((-1)/3)^-1)=(-3)/2`
Solution
We have to prove that `((0.6)^0-(0.1)^-1)/((3/8)^-1(3/2)^3+((-1)/3)^-1)=(-3)/2`
Let x = `((0.6)^0-(0.1)^-1)/((3/8)^-1(3/2)^3+((-1)/3)^-1)`
`=(1-((0.1xx10)/(1xx10))^-1)/((3^-1/2^(3xx(-1)))(3^3/2^3)+((-1)^-1/3^-1))`
`=(1-1/10^-1)/((3^-1/2^-3)(3^3/2^3)+((-1)/(1/3^1)))`
`=(1-1/(1/10))/((3^(-1+3)/2^(-3+3))+(-1xx3/1))`
`=(1-1xx10)/(3^2/2^0+(-3))`
`=(1-10)/(3^2/1-3)`
`=(-9)/(9-3)`
`=(-9)/6`
`=(-3)/2`
Hence, `((0.6)^0-(0.1)^-1)/((3/8)^-1(3/2)^3+((-1)/3)^-1)=(-3)/2`
APPEARS IN
RELATED QUESTIONS
Solve the following equation for x:
`2^(x+1)=4^(x-3)`
Solve the following equation for x:
`2^(3x-7)=256`
Prove that:
`sqrt(1/4)+(0.01)^(-1/2)-(27)^(2/3)=3/2`
If 2x = 3y = 12z, show that `1/z=1/y+2/x`
If 2x = 3y = 6-z, show that `1/x+1/y+1/z=0`
Solve the following equation:
`8^(x+1)=16^(y+2)` and, `(1/2)^(3+x)=(1/4)^(3y)`
Simplify \[\left[ \left\{ \left( 625 \right)^{- 1/2} \right\}^{- 1/4} \right]^2\]
The square root of 64 divided by the cube root of 64 is
If a, b, c are positive real numbers, then \[\sqrt{a^{- 1} b} \times \sqrt{b^{- 1} c} \times \sqrt{c^{- 1} a}\] is equal to
Find:-
`16^(3/4)`