Advertisements
Advertisements
प्रश्न
Prove that:
`((0.6)^0-(0.1)^-1)/((3/8)^-1(3/2)^3+((-1)/3)^-1)=(-3)/2`
उत्तर
We have to prove that `((0.6)^0-(0.1)^-1)/((3/8)^-1(3/2)^3+((-1)/3)^-1)=(-3)/2`
Let x = `((0.6)^0-(0.1)^-1)/((3/8)^-1(3/2)^3+((-1)/3)^-1)`
`=(1-((0.1xx10)/(1xx10))^-1)/((3^-1/2^(3xx(-1)))(3^3/2^3)+((-1)^-1/3^-1))`
`=(1-1/10^-1)/((3^-1/2^-3)(3^3/2^3)+((-1)/(1/3^1)))`
`=(1-1/(1/10))/((3^(-1+3)/2^(-3+3))+(-1xx3/1))`
`=(1-1xx10)/(3^2/2^0+(-3))`
`=(1-10)/(3^2/1-3)`
`=(-9)/(9-3)`
`=(-9)/6`
`=(-3)/2`
Hence, `((0.6)^0-(0.1)^-1)/((3/8)^-1(3/2)^3+((-1)/3)^-1)=(-3)/2`
APPEARS IN
संबंधित प्रश्न
If abc = 1, show that `1/(1+a+b^-1)+1/(1+b+c^-1)+1/(1+c+a^-1)=1`
Simplify the following:
`(3^nxx9^(n+1))/(3^(n-1)xx9^(n-1))`
If `1176=2^a3^b7^c,` find a, b and c.
Simplify:
`root5((32)^-3)`
If `3^(x+1)=9^(x-2),` find the value of `2^(1+x)`
Write the value of \[\sqrt[3]{125 \times 27}\].
If (x − 1)3 = 8, What is the value of (x + 1)2 ?
The simplest rationalising factor of \[\sqrt[3]{500}\] is
If \[\sqrt{2} = 1 . 4142\] then \[\sqrt{\frac{\sqrt{2} - 1}{\sqrt{2} + 1}}\] is equal to
Simplify:
`11^(1/2)/11^(1/4)`