Advertisements
Advertisements
प्रश्न
Prove that:
`(3^-3xx6^2xxsqrt98)/(5^2xxroot3(1/25)xx(15)^(-4/3)xx3^(1/3))=28sqrt2`
उत्तर
We have to prove that `(3^-3xx6^2xxsqrt98)/(5^2xxroot3(1/25)xx(15)^(-4/3)xx3^(1/3))=28sqrt2`
Let x = `(3^-3xx6^2xxsqrt98)/(5^2xxroot3(1/25)xx(15)^(-4/3)xx3^(1/3))`
`=(3^-3xx3^2xx2^2xxsqrt(7xx7xx2))/(5^2xxroot3(1/25)xx(15)^-(4/3)xx3^(1/3))`
`=(3^(-3+2)xx2^2xx7sqrt2)/(5^2xx1/5^(2xx1/3)xx5^(-4/3)xx3^(-4/3)xx3^(1/3))`
`=(3^-1xx2^2xx7sqrt2)/(5^2/1xx1/5^(2/3)xx1/5^(4/3)xx1/3^(4/3)xx3^(1/3)/1)`
`=3^-1xx2^2xx7sqrt2xx1/5^2xx5^(2/3)xx5^(4/3)xx3^(4/3)xx1/3^(1/3)`
`=3^-1xx3^(4/3)xx1/3^(1/3)xx4xx7sqrt2xx1/5^2xx5^(2/3)xx5^(4/3)`
`=3^(-1+4/3-1/3)xx4xx7sqrt2xx5^(-2+2/3+4/3)`
`=3^((-1xx3)/(1xx3)+4/3-1/3)xx28sqrt2xx5^((-2xx3)/(1xx3)+2/3+4/3)`
`=3^((-3+4-1)/3)xx28sqrt2xx5^((-6+2+4)/3)`
`=3^0xx28sqrt2xx5^0`
`=1xx28sqrt2xx1`
`=28sqrt2`
Hence, `(3^-3xx6^2xxsqrt98)/(5^2xxroot3(1/25)xx(15)^(-4/3)xx3^(1/3))=28sqrt2`
APPEARS IN
संबंधित प्रश्न
Solve the following equation for x:
`7^(2x+3)=1`
Given `4725=3^a5^b7^c,` find
(i) the integral values of a, b and c
(ii) the value of `2^-a3^b7^c`
Simplify:
`root5((32)^-3)`
If `a=x^(m+n)y^l, b=x^(n+l)y^m` and `c=x^(l+m)y^n,` Prove that `a^(m-n)b^(n-l)c^(l-m)=1`
If `x = a^(m+n),` `y=a^(n+l)` and `z=a^(l+m),` prove that `x^my^nz^l=x^ny^lz^m`
Write the value of \[\sqrt[3]{7} \times \sqrt[3]{49} .\]
If 10x = 64, what is the value of \[{10}^\frac{x}{2} + 1 ?\]
\[\frac{5^{n + 2} - 6 \times 5^{n + 1}}{13 \times 5^n - 2 \times 5^{n + 1}}\] is equal to
If x = \[\frac{2}{3 + \sqrt{7}}\],then (x−3)2 =
Find:-
`125^(1/3)`