Advertisements
Advertisements
प्रश्न
If 10x = 64, what is the value of \[{10}^\frac{x}{2} + 1 ?\]
पर्याय
18
42
80
81
उत्तर
We have to find the value of `10^(x/2+1)`provided `10^x = 64`
So,
`10^(x/2 xx 1) = 10^(x xx1/2) xx 10^1`
`= 2sqrt(10^x) xx 10^1`
By substituting `10x = 64 `we get
`=2sqrt 64 xx 10^1`
`=2sqrt (8xx8 )xx10`
`=8xx10`
`= 80`
APPEARS IN
संबंधित प्रश्न
Simplify the following
`(2x^-2y^3)^3`
Simplify:
`root5((32)^-3)`
Simplify:
`((5^-1xx7^2)/(5^2xx7^-4))^(7/2)xx((5^-2xx7^3)/(5^3xx7^-5))^(-5/2)`
Prove that:
`(1/4)^-2-3xx8^(2/3)xx4^0+(9/16)^(-1/2)=16/3`
`(2/3)^x (3/2)^(2x)=81/16 `then x =
If 102y = 25, then 10-y equals
The simplest rationalising factor of \[\sqrt{3} + \sqrt{5}\] is ______.
If \[\sqrt{2} = 1 . 414,\] then the value of \[\sqrt{6} - \sqrt{3}\] upto three places of decimal is
If \[\sqrt{13 - a\sqrt{10}} = \sqrt{8} + \sqrt{5}, \text { then a } =\]
Simplify:
`11^(1/2)/11^(1/4)`