Advertisements
Advertisements
प्रश्न
`(2/3)^x (3/2)^(2x)=81/16 `then x =
पर्याय
2
3
4
1
उत्तर
We have to find value of x provided `(2/3)^x (3/2)^(2x)=81/16 `
So,
`(2/3)^x (3/2)^(2x)=81/16 `
`(2/3)^x (3/2)^(2x)= 3^4/3^4`
`(2x)/(3x) (3^(2x))/(2^(2x)) = 3^4/2^4`
`3^(2x -x)/2^(2x-x) = 3^4/2^4`
`3^x/2^x = 3^4/2^4`
Equating exponents of power we get x = 4.
APPEARS IN
संबंधित प्रश्न
Simplify the following
`3(a^4b^3)^10xx5(a^2b^2)^3`
Simplify the following
`(2x^-2y^3)^3`
Solve the following equation for x:
`4^(2x)=1/32`
Assuming that x, y, z are positive real numbers, simplify the following:
`sqrt(x^3y^-2)`
Show that:
`1/(1+x^(a-b))+1/(1+x^(b-a))=1`
Find the value of x in the following:
`(3/5)^x(5/3)^(2x)=125/27`
Simplify:
`root(lm)(x^l/x^m)xxroot(mn)(x^m/x^n)xxroot(nl)(x^n/x^l)`
If x = 2 and y = 4, then \[\left( \frac{x}{y} \right)^{x - y} + \left( \frac{y}{x} \right)^{y - x} =\]
\[\frac{1}{\sqrt{9} - \sqrt{8}}\] is equal to
The value of \[\sqrt{5 + 2\sqrt{6}}\] is